Identifier
- St000940: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>0
[1,1]=>0
[3]=>0
[2,1]=>1
[1,1,1]=>0
[4]=>1
[3,1]=>2
[2,2]=>0
[2,1,1]=>1
[1,1,1,1]=>0
[5]=>2
[4,1]=>3
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>2
[2,1,1,1]=>1
[1,1,1,1,1]=>0
[6]=>5
[5,1]=>6
[4,2]=>3
[4,1,1]=>3
[3,3]=>2
[3,2,1]=>5
[3,1,1,1]=>2
[2,2,2]=>1
[2,2,1,1]=>1
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>0
[7]=>8
[6,1]=>9
[5,2]=>5
[5,1,1]=>5
[4,3]=>3
[4,2,1]=>7
[4,1,1,1]=>3
[3,3,1]=>6
[3,2,2]=>0
[3,2,1,1]=>3
[3,1,1,1,1]=>0
[2,2,2,1]=>5
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>0
[8]=>14
[7,1]=>15
[6,2]=>10
[6,1,1]=>10
[5,3]=>7
[5,2,1]=>12
[5,1,1,1]=>7
[4,4]=>8
[4,3,1]=>10
[4,2,2]=>8
[4,2,1,1]=>12
[4,1,1,1,1]=>6
[3,3,2]=>4
[3,3,1,1]=>4
[3,2,2,1]=>7
[3,2,1,1,1]=>4
[3,1,1,1,1,1]=>1
[2,2,2,2]=>2
[2,2,2,1,1]=>6
[2,2,1,1,1,1]=>4
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>0
[9]=>21
[8,1]=>22
[7,2]=>16
[7,1,1]=>16
[6,3]=>12
[6,2,1]=>18
[6,1,1,1]=>12
[5,4]=>10
[5,3,1]=>15
[5,2,2]=>5
[5,2,1,1]=>10
[5,1,1,1,1]=>5
[4,4,1]=>16
[4,3,2]=>12
[4,3,1,1]=>12
[4,2,2,1]=>16
[4,2,1,1,1]=>12
[4,1,1,1,1,1]=>6
[3,3,3]=>8
[3,3,2,1]=>12
[3,3,1,1,1]=>13
[3,2,2,2]=>4
[3,2,2,1,1]=>6
[3,2,1,1,1,1]=>4
[3,1,1,1,1,1,1]=>6
[2,2,2,2,1]=>10
[2,2,2,1,1,1]=>4
[2,2,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1]=>0
[10]=>32
[9,1]=>33
[8,2]=>26
[8,1,1]=>26
[7,3]=>21
[7,2,1]=>28
[7,1,1,1]=>21
[6,4]=>18
[6,3,1]=>24
[6,2,2]=>12
[6,2,1,1]=>18
[6,1,1,1,1]=>12
[5,5]=>22
[5,4,1]=>22
[5,3,2]=>18
[5,3,1,1]=>18
[5,2,2,1]=>17
[5,2,1,1,1]=>16
[5,1,1,1,1,1]=>12
[4,4,2]=>14
[4,4,1,1]=>14
[4,3,3]=>6
[4,3,2,1]=>18
[4,3,1,1,1]=>6
[4,2,2,2]=>10
[4,2,2,1,1]=>14
[4,2,1,1,1,1]=>10
[4,1,1,1,1,1,1]=>2
[3,3,3,1]=>20
[3,3,2,2]=>7
[3,3,2,1,1]=>6
[3,3,1,1,1,1]=>7
[3,2,2,2,1]=>12
[3,2,2,1,1,1]=>7
[3,2,1,1,1,1,1]=>4
[3,1,1,1,1,1,1,1]=>6
[2,2,2,2,2]=>6
[2,2,2,2,1,1]=>6
[2,2,2,1,1,1,1]=>10
[2,2,1,1,1,1,1,1]=>5
[2,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>45
[10,1]=>46
[9,2]=>38
[9,1,1]=>38
[8,3]=>32
[8,2,1]=>40
[8,1,1,1]=>32
[7,4]=>28
[7,3,1]=>35
[7,2,2]=>21
[7,2,1,1]=>28
[7,1,1,1,1]=>21
[6,5]=>26
[6,4,1]=>32
[6,3,2]=>20
[6,3,1,1]=>20
[6,2,2,1]=>26
[6,2,1,1,1]=>20
[6,1,1,1,1,1]=>14
[5,5,1]=>36
[5,4,2]=>22
[5,4,1,1]=>22
[5,3,3]=>11
[5,3,2,1]=>26
[5,3,1,1,1]=>11
[5,2,2,2]=>10
[5,2,2,1,1]=>12
[5,2,1,1,1,1]=>10
[5,1,1,1,1,1,1]=>6
[4,4,3]=>14
[4,4,2,1]=>28
[4,4,1,1,1]=>14
[4,3,3,1]=>20
[4,3,2,2]=>14
[4,3,2,1,1]=>26
[4,3,1,1,1,1]=>8
[4,2,2,2,1]=>24
[4,2,2,1,1,1]=>14
[4,2,1,1,1,1,1]=>14
[4,1,1,1,1,1,1,1]=>4
[3,3,3,2]=>12
[3,3,3,1,1]=>12
[3,3,2,2,1]=>11
[3,3,2,1,1,1]=>22
[3,3,1,1,1,1,1]=>5
[3,2,2,2,2]=>0
[3,2,2,2,1,1]=>8
[3,2,2,1,1,1,1]=>2
[3,2,1,1,1,1,1,1]=>10
[3,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,1]=>20
[2,2,2,2,1,1,1]=>0
[2,2,2,1,1,1,1,1]=>4
[2,2,1,1,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>65
[11,1]=>66
[10,2]=>57
[10,1,1]=>57
[9,3]=>50
[9,2,1]=>59
[9,1,1,1]=>50
[8,4]=>45
[8,3,1]=>53
[8,2,2]=>37
[8,2,1,1]=>45
[8,1,1,1,1]=>37
[7,5]=>42
[7,4,1]=>49
[7,3,2]=>35
[7,3,1,1]=>35
[7,2,2,1]=>42
[7,2,1,1,1]=>35
[7,1,1,1,1,1]=>28
[6,6]=>50
[6,5,1]=>47
[6,4,2]=>35
[6,4,1,1]=>35
[6,3,3]=>41
[6,3,2,1]=>47
[6,3,1,1,1]=>37
[6,2,2,2]=>26
[6,2,2,1,1]=>31
[6,2,1,1,1,1]=>26
[6,1,1,1,1,1,1]=>23
[5,5,2]=>37
[5,5,1,1]=>37
[5,4,3]=>29
[5,4,2,1]=>37
[5,4,1,1,1]=>25
[5,3,3,1]=>32
[5,3,2,2]=>18
[5,3,2,1,1]=>29
[5,3,1,1,1,1]=>14
[5,2,2,2,1]=>27
[5,2,2,1,1,1]=>16
[5,2,1,1,1,1,1]=>17
[5,1,1,1,1,1,1,1]=>12
[4,4,4]=>37
[4,4,3,1]=>35
[4,4,2,2]=>23
[4,4,2,1,1]=>37
[4,4,1,1,1,1]=>23
[4,3,3,2]=>19
[4,3,3,1,1]=>19
[4,3,2,2,1]=>39
[4,3,2,1,1,1]=>23
[4,3,1,1,1,1,1]=>15
[4,2,2,2,2]=>19
[4,2,2,2,1,1]=>19
[4,2,2,1,1,1,1]=>27
[4,2,1,1,1,1,1,1]=>11
[4,1,1,1,1,1,1,1,1]=>9
[3,3,3,3]=>26
[3,3,3,2,1]=>37
[3,3,3,1,1,1]=>26
[3,3,2,2,2]=>13
[3,3,2,2,1,1]=>12
[3,3,2,1,1,1,1]=>17
[3,3,1,1,1,1,1,1]=>8
[3,2,2,2,2,1]=>22
[3,2,2,2,1,1,1]=>17
[3,2,2,1,1,1,1,1]=>8
[3,2,1,1,1,1,1,1,1]=>15
[3,1,1,1,1,1,1,1,1,1]=>2
[2,2,2,2,2,2]=>12
[2,2,2,2,2,1,1]=>21
[2,2,2,2,1,1,1,1]=>12
[2,2,2,1,1,1,1,1,1]=>7
[2,2,1,1,1,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of characters of the symmetric group whose value on the partition is zero.
The maximal value for any given size is recorded in [2].
The maximal value for any given size is recorded in [2].
References
[1] Miller, A. R. Note on parity and the irreducible characters of the symmetric group arXiv:1708.03267
[2] Maximal number of zeros in a column of the character table of the symmetric group S_n. OEIS:A086642
[2] Maximal number of zeros in a column of the character table of the symmetric group S_n. OEIS:A086642
Code
def statistic(la): s = SymmetricFunctions(ZZ).s() p = SymmetricFunctions(ZZ).p() P = Partitions(la.size()) r = P.cardinality() res = [0]*r for i, (mu, v) in enumerate(s(p(la))): res[i] = v return len([1 for e in res if is_even(e)])
Created
Aug 12, 2017 at 11:37 by Martin Rubey
Updated
Aug 12, 2017 at 13:44 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!