Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000948: Graphs ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [2,1] => ([(0,1)],2) => 1
[1,0,1,0] => [1,1,0,1,0,0] => [2,3,1] => ([(0,2),(1,2)],3) => 1
[1,1,0,0] => [1,1,1,0,0,0] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => 2
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 4
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 8
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 12
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 12
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 18
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 24
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 18
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 24
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 16
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 24
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 24
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 36
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 48
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [5,3,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 24
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 36
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [5,3,4,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 18
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [6,3,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 36
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 54
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 72
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,4,3,2,6,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 24
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 48
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 72
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 96
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 120
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,5,7,6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [2,3,4,6,5,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [2,3,4,7,5,6,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [2,3,4,7,6,5,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [2,3,5,4,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [2,3,5,4,7,6,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 4
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [2,3,6,4,5,7,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [2,3,7,4,5,6,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [2,3,7,4,6,5,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 12
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [2,3,6,5,4,7,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [2,3,7,5,4,6,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 12
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [2,3,7,5,6,4,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 18
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [2,3,7,6,5,4,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 24
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [2,4,3,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [2,4,3,5,7,6,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 4
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [2,4,3,6,5,7,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [2,4,3,7,5,6,1] => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [2,5,3,4,6,7,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [2,5,3,4,7,6,1] => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [2,6,3,4,5,7,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [2,7,3,4,5,6,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 16
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [2,7,3,4,6,5,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 24
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [2,6,3,5,4,7,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 12
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [2,7,3,5,4,6,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 24
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [2,7,3,5,6,4,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 36
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [2,7,3,6,5,4,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 48
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [2,5,4,3,6,7,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [2,6,4,3,5,7,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 12
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [2,7,4,3,5,6,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 24
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [2,7,4,3,6,5,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 36
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [2,6,4,5,3,7,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 18
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [2,7,4,5,3,6,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 36
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [2,7,4,5,6,3,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 54
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [2,7,4,6,5,3,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 72
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [2,6,5,4,3,7,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 24
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,1,0,0,0] => [2,7,5,4,3,6,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 48
>>> Load all 177 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The chromatic discriminant of a graph.
The chromatic discriminant $\alpha(G)$ is the coefficient of the linear term of the chromatic polynomial $\chi(G,q)$.
According to [1], it equals the cardinality of any of the following sets:
(1) Acyclic orientations of G with unique sink at $q$,
(2) Maximum $G$-parking functions relative to $q$,
(3) Minimal $q$-critical states,
(4) Spanning trees of G without broken circuits,
(5) Conjugacy classes of Coxeter elements in the Coxeter group associated to $G$,
(6) Multilinear Lyndon heaps on $G$.
In addition, $\alpha(G)$ is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
The chromatic discriminant $\alpha(G)$ is the coefficient of the linear term of the chromatic polynomial $\chi(G,q)$.
According to [1], it equals the cardinality of any of the following sets:
(1) Acyclic orientations of G with unique sink at $q$,
(2) Maximum $G$-parking functions relative to $q$,
(3) Minimal $q$-critical states,
(4) Spanning trees of G without broken circuits,
(5) Conjugacy classes of Coxeter elements in the Coxeter group associated to $G$,
(6) Multilinear Lyndon heaps on $G$.
In addition, $\alpha(G)$ is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!