Identifier
- St000949: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>3
[1,1,0,0]=>5
[1,0,1,0,1,0]=>4
[1,0,1,1,0,0]=>7
[1,1,0,0,1,0]=>7
[1,1,0,1,0,0]=>9
[1,1,1,0,0,0]=>14
[1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,0]=>9
[1,0,1,1,0,0,1,0]=>10
[1,0,1,1,0,1,0,0]=>11
[1,0,1,1,1,0,0,0]=>19
[1,1,0,0,1,0,1,0]=>9
[1,1,0,0,1,1,0,0]=>16
[1,1,0,1,0,0,1,0]=>11
[1,1,0,1,0,1,0,0]=>15
[1,1,0,1,1,0,0,0]=>23
[1,1,1,0,0,0,1,0]=>19
[1,1,1,0,0,1,0,0]=>23
[1,1,1,0,1,0,0,0]=>28
[1,1,1,1,0,0,0,0]=>42
[1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,0]=>11
[1,0,1,0,1,1,0,0,1,0]=>13
[1,0,1,0,1,1,0,1,0,0]=>13
[1,0,1,0,1,1,1,0,0,0]=>24
[1,0,1,1,0,0,1,0,1,0]=>13
[1,0,1,1,0,0,1,1,0,0]=>23
[1,0,1,1,0,1,0,0,1,0]=>13
[1,0,1,1,0,1,0,1,0,0]=>18
[1,0,1,1,0,1,1,0,0,0]=>27
[1,0,1,1,1,0,0,0,1,0]=>26
[1,0,1,1,1,0,0,1,0,0]=>32
[1,0,1,1,1,0,1,0,0,0]=>33
[1,0,1,1,1,1,0,0,0,0]=>56
[1,1,0,0,1,0,1,0,1,0]=>11
[1,1,0,0,1,0,1,1,0,0]=>20
[1,1,0,0,1,1,0,0,1,0]=>23
[1,1,0,0,1,1,0,1,0,0]=>24
[1,1,0,0,1,1,1,0,0,0]=>43
[1,1,0,1,0,0,1,0,1,0]=>13
[1,1,0,1,0,0,1,1,0,0]=>24
[1,1,0,1,0,1,0,0,1,0]=>18
[1,1,0,1,0,1,0,1,0,0]=>22
[1,1,0,1,0,1,1,0,0,0]=>37
[1,1,0,1,1,0,0,0,1,0]=>32
[1,1,0,1,1,0,0,1,0,0]=>32
[1,1,0,1,1,0,1,0,0,0]=>43
[1,1,0,1,1,1,0,0,0,0]=>66
[1,1,1,0,0,0,1,0,1,0]=>24
[1,1,1,0,0,0,1,1,0,0]=>43
[1,1,1,0,0,1,0,0,1,0]=>27
[1,1,1,0,0,1,0,1,0,0]=>37
[1,1,1,0,0,1,1,0,0,0]=>57
[1,1,1,0,1,0,0,0,1,0]=>33
[1,1,1,0,1,0,0,1,0,0]=>43
[1,1,1,0,1,0,1,0,0,0]=>52
[1,1,1,0,1,1,0,0,0,0]=>76
[1,1,1,1,0,0,0,0,1,0]=>56
[1,1,1,1,0,0,0,1,0,0]=>66
[1,1,1,1,0,0,1,0,0,0]=>76
[1,1,1,1,0,1,0,0,0,0]=>90
[1,1,1,1,1,0,0,0,0,0]=>132
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Gives the number of generalised tilting modules of the corresponding LNakayama algebra.
References
Code
gap('LoadPackage("QPA");') def NthRadical(M, n): if n == 0: f = gap.IdentityMapping(M) else: f = gap.RadicalOfModuleInclusion(M) N = gap.Source(f) for i in range(n-1): h = gap.RadicalOfModuleInclusion(N); N = gap.Source(h) f = h * f return f def ARQuiverNak(A): injA = gap.IndecInjectiveModules(A) L = [gap.Source(NthRadical(inj, j)) for inj in injA for j in range(gap.Dimension(inj).sage())] return L def kupisch(D): """ sage: [kupisch(D) for D in DyckWords(3)] [[2, 2, 2, 1], [2, 3, 2, 1], [3, 2, 2, 1], [3, 3, 2, 1], [4, 3, 2, 1]] sage: all(kupisch(D) == [a+2 for a in D.reverse().to_area_sequence()[::-1]] + [1] for D in DyckWords(5)) """ H = D.heights() return [1+H[i] for i, s in enumerate(D) if s == 0]+[1] def statistic(D): D = DyckWord(D) K = kupisch(D) A = gap.NakayamaAlgebra(K, gap.GF(3)) g = gap.GlobalDimensionOfAlgebra(A,30) L = ARQuiverNak(A) LL = [x for x in L if not gap.IsProjectiveModule(x) or not gap.IsInjectiveModule(x)] r = len(gap.SimpleModules(A)) - (len(L) - len(LL)) S = [[LL[i-1] for i in s] for s in Subsets(len(LL), r)] return sum(1 for x in S if gap.N_RigidModule(gap.DirectSumOfQPAModules(x) , g)) # gap code DeclareOperation("TiltingModules",[IsList]); InstallMethod(TiltingModules, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h; u:=LIST[1]; A:=NakayamaAlgebra(GF(3),u); g:=GlobalDimensionOfAlgebra(A,30); L:=ARQuiver([A,1000])[2]; LL:=Filtered(L,x->(IsProjectiveModule(x)=false or IsInjectiveModule(x)=false)); r:=Size(SimpleModules(A))-(Size(L)-Size(LL)); subsets1:=Combinations([1..Length(LL)],r);subsets2:=List(subsets1,x->LL{x}); W:=Filtered(subsets2,x->N_RigidModule(DirectSumOfQPAModules(x),g)=true); return([u,Size(W)]); end);
Created
Aug 25, 2017 at 10:52 by Rene Marczinzik
Updated
Aug 25, 2020 at 15:00 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!