edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>2 [1,0,1,0]=>3 [1,1,0,0]=>5 [1,0,1,0,1,0]=>4 [1,0,1,1,0,0]=>7 [1,1,0,0,1,0]=>7 [1,1,0,1,0,0]=>9 [1,1,1,0,0,0]=>14 [1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,1,0,0]=>9 [1,0,1,1,0,0,1,0]=>10 [1,0,1,1,0,1,0,0]=>11 [1,0,1,1,1,0,0,0]=>19 [1,1,0,0,1,0,1,0]=>9 [1,1,0,0,1,1,0,0]=>16 [1,1,0,1,0,0,1,0]=>11 [1,1,0,1,0,1,0,0]=>15 [1,1,0,1,1,0,0,0]=>23 [1,1,1,0,0,0,1,0]=>19 [1,1,1,0,0,1,0,0]=>23 [1,1,1,0,1,0,0,0]=>28 [1,1,1,1,0,0,0,0]=>42 [1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,1,0,0]=>11 [1,0,1,0,1,1,0,0,1,0]=>13 [1,0,1,0,1,1,0,1,0,0]=>13 [1,0,1,0,1,1,1,0,0,0]=>24 [1,0,1,1,0,0,1,0,1,0]=>13 [1,0,1,1,0,0,1,1,0,0]=>23 [1,0,1,1,0,1,0,0,1,0]=>13 [1,0,1,1,0,1,0,1,0,0]=>18 [1,0,1,1,0,1,1,0,0,0]=>27 [1,0,1,1,1,0,0,0,1,0]=>26 [1,0,1,1,1,0,0,1,0,0]=>32 [1,0,1,1,1,0,1,0,0,0]=>33 [1,0,1,1,1,1,0,0,0,0]=>56 [1,1,0,0,1,0,1,0,1,0]=>11 [1,1,0,0,1,0,1,1,0,0]=>20 [1,1,0,0,1,1,0,0,1,0]=>23 [1,1,0,0,1,1,0,1,0,0]=>24 [1,1,0,0,1,1,1,0,0,0]=>43 [1,1,0,1,0,0,1,0,1,0]=>13 [1,1,0,1,0,0,1,1,0,0]=>24 [1,1,0,1,0,1,0,0,1,0]=>18 [1,1,0,1,0,1,0,1,0,0]=>22 [1,1,0,1,0,1,1,0,0,0]=>37 [1,1,0,1,1,0,0,0,1,0]=>32 [1,1,0,1,1,0,0,1,0,0]=>32 [1,1,0,1,1,0,1,0,0,0]=>43 [1,1,0,1,1,1,0,0,0,0]=>66 [1,1,1,0,0,0,1,0,1,0]=>24 [1,1,1,0,0,0,1,1,0,0]=>43 [1,1,1,0,0,1,0,0,1,0]=>27 [1,1,1,0,0,1,0,1,0,0]=>37 [1,1,1,0,0,1,1,0,0,0]=>57 [1,1,1,0,1,0,0,0,1,0]=>33 [1,1,1,0,1,0,0,1,0,0]=>43 [1,1,1,0,1,0,1,0,0,0]=>52 [1,1,1,0,1,1,0,0,0,0]=>76 [1,1,1,1,0,0,0,0,1,0]=>56 [1,1,1,1,0,0,0,1,0,0]=>66 [1,1,1,1,0,0,1,0,0,0]=>76 [1,1,1,1,0,1,0,0,0,0]=>90 [1,1,1,1,1,0,0,0,0,0]=>132
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Gives the number of generalised tilting modules of the corresponding LNakayama algebra.
Code
gap('LoadPackage("QPA");')

def NthRadical(M, n):
    if n == 0:
        f = gap.IdentityMapping(M)
    else:
        f = gap.RadicalOfModuleInclusion(M)
        N = gap.Source(f)
        for i in range(n-1):
            h = gap.RadicalOfModuleInclusion(N);
            N = gap.Source(h)
            f = h * f
    return f

def ARQuiverNak(A):
    injA = gap.IndecInjectiveModules(A)
    L = [gap.Source(NthRadical(inj, j))
         for inj in injA
         for j in range(gap.Dimension(inj).sage())]
    return L

def kupisch(D):
    """
    sage: [kupisch(D) for D in DyckWords(3)]
    [[2, 2, 2, 1], [2, 3, 2, 1], [3, 2, 2, 1], [3, 3, 2, 1], [4, 3, 2, 1]]

    sage: all(kupisch(D) == [a+2 for a in D.reverse().to_area_sequence()[::-1]] + [1] for D in DyckWords(5))
    """
    H = D.heights()
    return [1+H[i] for i, s in enumerate(D) if s == 0]+[1]

def statistic(D):
    D = DyckWord(D)
    K = kupisch(D)
    A = gap.NakayamaAlgebra(K, gap.GF(3))
    g = gap.GlobalDimensionOfAlgebra(A,30)
    L = ARQuiverNak(A)
    LL = [x for x in L
          if not gap.IsProjectiveModule(x) or not gap.IsInjectiveModule(x)]
    r = len(gap.SimpleModules(A)) - (len(L) - len(LL))
    S = [[LL[i-1] for i in s] for s in Subsets(len(LL), r)]
    return sum(1 for x in S
               if gap.N_RigidModule(gap.DirectSumOfQPAModules(x) , g))

# gap code

DeclareOperation("TiltingModules",[IsList]);

InstallMethod(TiltingModules, "for a representation of a quiver", [IsList],0,function(LIST)

local M, n, f, N, i, h;

u:=LIST[1];
A:=NakayamaAlgebra(GF(3),u);
g:=GlobalDimensionOfAlgebra(A,30);
L:=ARQuiver([A,1000])[2];
LL:=Filtered(L,x->(IsProjectiveModule(x)=false or IsInjectiveModule(x)=false));
r:=Size(SimpleModules(A))-(Size(L)-Size(LL));
subsets1:=Combinations([1..Length(LL)],r);subsets2:=List(subsets1,x->LL{x});
W:=Filtered(subsets2,x->N_RigidModule(DirectSumOfQPAModules(x),g)=true);




return([u,Size(W)]);

end);
Created
Aug 25, 2017 at 10:52 by Rene Marczinzik
Updated
Aug 25, 2020 at 15:00 by Martin Rubey