Identifier
- St000950: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>2
[1,1,0,0]=>5
[1,0,1,0,1,0]=>2
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>5
[1,1,0,1,0,0]=>5
[1,1,1,0,0,0]=>14
[1,0,1,0,1,0,1,0]=>2
[1,0,1,0,1,1,0,0]=>4
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>4
[1,0,1,1,1,0,0,0]=>10
[1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0]=>10
[1,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,0]=>10
[1,1,1,0,0,0,1,0]=>14
[1,1,1,0,0,1,0,0]=>14
[1,1,1,0,1,0,0,0]=>14
[1,1,1,1,0,0,0,0]=>42
[1,0,1,0,1,0,1,0,1,0]=>2
[1,0,1,0,1,0,1,1,0,0]=>4
[1,0,1,0,1,1,0,0,1,0]=>4
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>10
[1,0,1,1,0,0,1,0,1,0]=>4
[1,0,1,1,0,0,1,1,0,0]=>8
[1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>8
[1,0,1,1,1,0,0,0,1,0]=>10
[1,0,1,1,1,0,0,1,0,0]=>10
[1,0,1,1,1,0,1,0,0,0]=>10
[1,0,1,1,1,1,0,0,0,0]=>28
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>10
[1,1,0,0,1,1,0,0,1,0]=>10
[1,1,0,0,1,1,0,1,0,0]=>10
[1,1,0,0,1,1,1,0,0,0]=>25
[1,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,0]=>10
[1,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,0]=>5
[1,1,0,1,0,1,1,0,0,0]=>10
[1,1,0,1,1,0,0,0,1,0]=>10
[1,1,0,1,1,0,0,1,0,0]=>10
[1,1,0,1,1,0,1,0,0,0]=>10
[1,1,0,1,1,1,0,0,0,0]=>25
[1,1,1,0,0,0,1,0,1,0]=>14
[1,1,1,0,0,0,1,1,0,0]=>28
[1,1,1,0,0,1,0,0,1,0]=>14
[1,1,1,0,0,1,0,1,0,0]=>14
[1,1,1,0,0,1,1,0,0,0]=>28
[1,1,1,0,1,0,0,0,1,0]=>14
[1,1,1,0,1,0,0,1,0,0]=>14
[1,1,1,0,1,0,1,0,0,0]=>14
[1,1,1,0,1,1,0,0,0,0]=>28
[1,1,1,1,0,0,0,0,1,0]=>42
[1,1,1,1,0,0,0,1,0,0]=>42
[1,1,1,1,0,0,1,0,0,0]=>42
[1,1,1,1,0,1,0,0,0,0]=>42
[1,1,1,1,1,0,0,0,0,0]=>132
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of tilting modules of the corresponding LNakayama algebra, where a tilting module is a generalised tilting module of projective dimension 1.
References
Code
DeclareOperation("TiltingModulesProjDim1",[IsList]); InstallMethod(TiltingModulesProjDim1, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h; u:=LIST[1]; A:=NakayamaAlgebra(GF(3),u); L:=ARQuiver([A,1000])[2]; LL:=Filtered(L,x->(IsProjectiveModule(x)=false or IsInjectiveModule(x)=false)); LL2:=Filtered(LL,x->ProjDimensionOfModule(x,100)<=1); r:=Size(SimpleModules(A))-(Size(L)-Size(LL)); subsets1:=Combinations([1..Length(LL2)],r);subsets2:=List(subsets1,x->LL2{x}); W:=Filtered(subsets2,x->N_RigidModule(DirectSumOfQPAModules(x),1)=true); return([u,Size(W)]); end);
Created
Aug 25, 2017 at 11:15 by Rene Marczinzik
Updated
Aug 25, 2017 at 11:15 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!