edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>0 [1,1,0,0]=>3 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>2 [1,1,0,0,1,0]=>2 [1,1,0,1,0,0]=>0 [1,1,1,0,0,0]=>6 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>2 [1,0,1,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,0]=>0 [1,0,1,1,1,0,0,0]=>5 [1,1,0,0,1,0,1,0]=>2 [1,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,0]=>0 [1,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,0,1,0]=>5 [1,1,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,0,0]=>0 [1,1,1,1,0,0,0,0]=>10 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>2 [1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,1,1,0,0,0]=>5 [1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,0,0,1,0]=>4 [1,0,1,1,1,0,0,1,0,0]=>2 [1,0,1,1,1,0,1,0,0,0]=>0 [1,0,1,1,1,1,0,0,0,0]=>9 [1,1,0,0,1,0,1,0,1,0]=>2 [1,1,0,0,1,0,1,1,0,0]=>4 [1,1,0,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,1,0,1,0,0]=>2 [1,1,0,0,1,1,1,0,0,0]=>7 [1,1,0,1,0,0,1,0,1,0]=>0 [1,1,0,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,1,0,0,1,0,0]=>1 [1,1,0,1,1,0,1,0,0,0]=>0 [1,1,0,1,1,1,0,0,0,0]=>7 [1,1,1,0,0,0,1,0,1,0]=>5 [1,1,1,0,0,0,1,1,0,0]=>7 [1,1,1,0,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>6 [1,1,1,0,1,0,0,0,1,0]=>0 [1,1,1,0,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,1,0,0,0]=>0 [1,1,1,0,1,1,0,0,0,0]=>4 [1,1,1,1,0,0,0,0,1,0]=>9 [1,1,1,1,0,0,0,1,0,0]=>7 [1,1,1,1,0,0,1,0,0,0]=>4 [1,1,1,1,0,1,0,0,0,0]=>0 [1,1,1,1,1,0,0,0,0,0]=>15 [1,0,1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,0,1,1,0,0]=>2 [1,0,1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,0,1,1,1,0,0,0]=>5 [1,0,1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,0,1,1,1,0,0,0,1,0]=>4 [1,0,1,0,1,1,1,0,0,1,0,0]=>2 [1,0,1,0,1,1,1,0,1,0,0,0]=>0 [1,0,1,0,1,1,1,1,0,0,0,0]=>9 [1,0,1,1,0,0,1,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,0,1,1,0,0]=>3 [1,0,1,1,0,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,0,1,1,0,1,0,0]=>1 [1,0,1,1,0,0,1,1,1,0,0,0]=>6 [1,0,1,1,0,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,0,1,1,0,0,0]=>3 [1,0,1,1,0,1,1,0,0,0,1,0]=>2 [1,0,1,1,0,1,1,0,0,1,0,0]=>1 [1,0,1,1,0,1,1,0,1,0,0,0]=>0 [1,0,1,1,0,1,1,1,0,0,0,0]=>7 [1,0,1,1,1,0,0,0,1,0,1,0]=>4 [1,0,1,1,1,0,0,0,1,1,0,0]=>6 [1,0,1,1,1,0,0,1,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,1,0,0]=>2 [1,0,1,1,1,0,0,1,1,0,0,0]=>5 [1,0,1,1,1,0,1,0,0,0,1,0]=>0 [1,0,1,1,1,0,1,0,0,1,0,0]=>0 [1,0,1,1,1,0,1,0,1,0,0,0]=>0 [1,0,1,1,1,0,1,1,0,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0,1,0]=>8 [1,0,1,1,1,1,0,0,0,1,0,0]=>6 [1,0,1,1,1,1,0,0,1,0,0,0]=>3 [1,0,1,1,1,1,0,1,0,0,0,0]=>0 [1,0,1,1,1,1,1,0,0,0,0,0]=>14 [1,1,0,0,1,0,1,0,1,0,1,0]=>2 [1,1,0,0,1,0,1,0,1,1,0,0]=>4 [1,1,0,0,1,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,0,1,1,0,1,0,0]=>2 [1,1,0,0,1,0,1,1,1,0,0,0]=>7 [1,1,0,0,1,1,0,0,1,0,1,0]=>3 [1,1,0,0,1,1,0,0,1,1,0,0]=>5 [1,1,0,0,1,1,0,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,1,0,0]=>2 [1,1,0,0,1,1,0,1,1,0,0,0]=>5 [1,1,0,0,1,1,1,0,0,0,1,0]=>6 [1,1,0,0,1,1,1,0,0,1,0,0]=>4 [1,1,0,0,1,1,1,0,1,0,0,0]=>2 [1,1,0,0,1,1,1,1,0,0,0,0]=>11 [1,1,0,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,1,0,0,1,0,1,1,0,0]=>2 [1,1,0,1,0,0,1,1,0,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,1,0,0,1,1,1,0,0,0]=>5 [1,1,0,1,0,1,0,0,1,0,1,0]=>0 [1,1,0,1,0,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,0,1,1,0,0,1,0,0]=>1 [1,1,0,1,0,1,1,0,1,0,0,0]=>0 [1,1,0,1,0,1,1,1,0,0,0,0]=>7 [1,1,0,1,1,0,0,0,1,0,1,0]=>2 [1,1,0,1,1,0,0,0,1,1,0,0]=>4 [1,1,0,1,1,0,0,1,0,0,1,0]=>1 [1,1,0,1,1,0,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,1,1,0,0,0]=>4 [1,1,0,1,1,0,1,0,0,0,1,0]=>0 [1,1,0,1,1,0,1,0,0,1,0,0]=>0 [1,1,0,1,1,0,1,0,1,0,0,0]=>0 [1,1,0,1,1,0,1,1,0,0,0,0]=>4 [1,1,0,1,1,1,0,0,0,0,1,0]=>6 [1,1,0,1,1,1,0,0,0,1,0,0]=>4 [1,1,0,1,1,1,0,0,1,0,0,0]=>2 [1,1,0,1,1,1,0,1,0,0,0,0]=>0 [1,1,0,1,1,1,1,0,0,0,0,0]=>12 [1,1,1,0,0,0,1,0,1,0,1,0]=>5 [1,1,1,0,0,0,1,0,1,1,0,0]=>7 [1,1,1,0,0,0,1,1,0,0,1,0]=>6 [1,1,1,0,0,0,1,1,0,1,0,0]=>5 [1,1,1,0,0,0,1,1,1,0,0,0]=>10 [1,1,1,0,0,1,0,0,1,0,1,0]=>3 [1,1,1,0,0,1,0,0,1,1,0,0]=>5 [1,1,1,0,0,1,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,0,1,1,0,0,0]=>6 [1,1,1,0,0,1,1,0,0,0,1,0]=>5 [1,1,1,0,0,1,1,0,0,1,0,0]=>4 [1,1,1,0,0,1,1,0,1,0,0,0]=>3 [1,1,1,0,0,1,1,1,0,0,0,0]=>10 [1,1,1,0,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,1,0,0,0,1,1,0,0]=>2 [1,1,1,0,1,0,0,1,0,0,1,0]=>0 [1,1,1,0,1,0,0,1,0,1,0,0]=>0 [1,1,1,0,1,0,0,1,1,0,0,0]=>3 [1,1,1,0,1,0,1,0,0,0,1,0]=>0 [1,1,1,0,1,0,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,1,0,1,0,0,0]=>0 [1,1,1,0,1,0,1,1,0,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0,1,0]=>3 [1,1,1,0,1,1,0,0,0,1,0,0]=>2 [1,1,1,0,1,1,0,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,1,0,0,0,0]=>0 [1,1,1,0,1,1,1,0,0,0,0,0]=>9 [1,1,1,1,0,0,0,0,1,0,1,0]=>9 [1,1,1,1,0,0,0,0,1,1,0,0]=>11 [1,1,1,1,0,0,0,1,0,0,1,0]=>7 [1,1,1,1,0,0,0,1,0,1,0,0]=>7 [1,1,1,1,0,0,0,1,1,0,0,0]=>10 [1,1,1,1,0,0,1,0,0,0,1,0]=>4 [1,1,1,1,0,0,1,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,1,1,0,0,0,0]=>8 [1,1,1,1,0,1,0,0,0,0,1,0]=>0 [1,1,1,1,0,1,0,0,0,1,0,0]=>0 [1,1,1,1,0,1,0,0,1,0,0,0]=>0 [1,1,1,1,0,1,0,1,0,0,0,0]=>0 [1,1,1,1,0,1,1,0,0,0,0,0]=>5 [1,1,1,1,1,0,0,0,0,0,1,0]=>14 [1,1,1,1,1,0,0,0,0,1,0,0]=>12 [1,1,1,1,1,0,0,0,1,0,0,0]=>9 [1,1,1,1,1,0,0,1,0,0,0,0]=>5 [1,1,1,1,1,0,1,0,0,0,0,0]=>0 [1,1,1,1,1,1,0,0,0,0,0,0]=>21
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The dimension of $Ext^{1}(D(A),A)$ of the corresponding LNakayama algebra.
Code
DeclareOperation("DimExt",[IsList]);

InstallMethod(DimExt, "for a representation of a quiver", [IsList],0,function(LIST)

local M, n, f, N, i, h;

u:=LIST[1];
A:=NakayamaAlgebra(GF(3),u);
projA:=IndecProjectiveModules(A);RegA:=DirectSumOfQPAModules(projA);injA:=IndecInjectiveModules(A);CoRegA:=DirectSumOfQPAModules(injA);
r:=Size(ExtOverAlgebra(CoRegA,RegA)[2]);




return([u,r]);

end);
Created
Aug 25, 2017 at 13:03 by Rene Marczinzik
Updated
Aug 25, 2017 at 13:03 by Rene Marczinzik