Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000980: Dyck paths ⟶ ℤ
Values
['A',1] => ([],1) => [1] => [1,0,1,0] => 0
['A',2] => ([(0,2),(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
['B',2] => ([(0,3),(1,3),(3,2)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 3
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,0,1,0,1,0] => 0
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [1,1,1,0,1,0,0,1,0,0,1,0] => 1
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [1,1,1,0,1,0,0,1,0,0,1,0] => 1
['A',4] => ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10) => [4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => 0
['D',4] => ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12) => [5,3,3,1] => [1,1,0,1,0,0,1,1,0,0,1,0] => 0
['A',5] => ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15) => [5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
['A',6] => ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21) => [6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of boxes weakly below the path and above the diagonal that lie below at least two peaks.
For example, the path $111011010000$ has three peaks in positions $03, 15, 26$. The boxes below $03$ are $01,02,\textbf{12}$, the boxes below $15$ are $\textbf{12},13,14,\textbf{23},\textbf{24},\textbf{34}$, and the boxes below $26$ are $\textbf{23},\textbf{24},25,\textbf{34},35,45$.
We thus obtain the four boxes in positions $12,23,24,34$ that are below at least two peaks.
For example, the path $111011010000$ has three peaks in positions $03, 15, 26$. The boxes below $03$ are $01,02,\textbf{12}$, the boxes below $15$ are $\textbf{12},13,14,\textbf{23},\textbf{24},\textbf{34}$, and the boxes below $26$ are $\textbf{23},\textbf{24},25,\textbf{34},35,45$.
We thus obtain the four boxes in positions $12,23,24,34$ that are below at least two peaks.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!