Identifier
-
Mp00124:
Dyck paths
—Adin-Bagno-Roichman transformation⟶
Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000984: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => [1,1,0,0] => 1
[1,0,1,0] => [1,0,1,0] => [1,0,1,0] => [1,1,0,1,0,0] => 2
[1,1,0,0] => [1,1,0,0] => [1,1,0,0] => [1,1,1,0,0,0] => 3
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => 4
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 4
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 4
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => 6
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => 5
[1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => 5
[1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 5
[1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 7
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 5
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => 6
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => 5
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => 5
[1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 6
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 7
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => 7
[1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => 7
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 10
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 6
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => 6
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => 6
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 8
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => 6
[1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 7
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => 6
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => 6
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 7
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 8
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 7
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 8
[1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 11
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 6
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 7
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => 7
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => 7
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 9
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 6
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => 8
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 6
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 6
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 7
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 7
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 7
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 7
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 8
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 8
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 9
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 8
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 8
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 10
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => 8
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 8
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 8
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 11
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 11
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 11
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 10
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 10
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 15
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => 7
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => 7
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => 7
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => 9
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => 7
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => 8
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => 7
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => 7
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => 8
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => 9
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => 8
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => 9
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => 12
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => 7
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => 8
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => 8
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,1,0,0,0] => 8
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => 10
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => 7
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => 9
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => 7
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => 7
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => 8
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => 8
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => 9
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => 8
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,1,1,1,0,1,0,0,0,0,0] => 9
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => 9
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => 10
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,0,1,1,0,0,1,0,0] => 8
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,1,1,0,1,0,0,0] => 8
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => 11
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => 9
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,1,1,0,0,0] => 8
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => 9
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => 11
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of boxes below precisely one peak.
Imagine that each peak of the Dyck path, drawn with north and east steps, casts a shadow onto the triangular region between it and the diagonal. This statistic is the number of cells which are in the shade of precisely one peak.
Imagine that each peak of the Dyck path, drawn with north and east steps, casts a shadow onto the triangular region between it and the diagonal. This statistic is the number of cells which are in the shade of precisely one peak.
Map
switch returns and last double rise
Description
An alternative to the Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
Adin-Bagno-Roichman transformation
Description
The Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!