Identifier
Values
[] => 0
[1] => 1
[2] => 2
[1,1] => 0
[3] => 3
[2,1] => 1
[1,1,1] => 1
[4] => 4
[3,1] => 2
[2,2] => 0
[2,1,1] => 2
[1,1,1,1] => 0
[5] => 5
[4,1] => 3
[3,2] => 1
[3,1,1] => 3
[2,2,1] => 1
[2,1,1,1] => 1
[1,1,1,1,1] => 1
[6] => 6
[5,1] => 4
[4,2] => 2
[4,1,1] => 4
[3,3] => 0
[3,2,1] => 2
[3,1,1,1] => 2
[2,2,2] => 2
[2,2,1,1] => 0
[2,1,1,1,1] => 2
[1,1,1,1,1,1] => 0
[7] => 7
[6,1] => 5
[5,2] => 3
[5,1,1] => 5
[4,3] => 1
[4,2,1] => 3
[4,1,1,1] => 3
[3,3,1] => 1
[3,2,2] => 3
[3,2,1,1] => 1
[3,1,1,1,1] => 3
[2,2,2,1] => 1
[2,2,1,1,1] => 1
[2,1,1,1,1,1] => 1
[1,1,1,1,1,1,1] => 1
[8] => 8
[7,1] => 6
[6,2] => 4
[6,1,1] => 6
[5,3] => 2
[5,2,1] => 4
[5,1,1,1] => 4
[4,4] => 0
[4,3,1] => 2
[4,2,2] => 4
[4,2,1,1] => 2
[4,1,1,1,1] => 4
[3,3,2] => 2
[3,3,1,1] => 0
[3,2,2,1] => 2
[3,2,1,1,1] => 2
[3,1,1,1,1,1] => 2
[2,2,2,2] => 0
[2,2,2,1,1] => 2
[2,2,1,1,1,1] => 0
[2,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1] => 0
[9] => 9
[8,1] => 7
[7,2] => 5
[7,1,1] => 7
[6,3] => 3
[6,2,1] => 5
[6,1,1,1] => 5
[5,4] => 1
[5,3,1] => 3
[5,2,2] => 5
[5,2,1,1] => 3
[5,1,1,1,1] => 5
[4,4,1] => 1
[4,3,2] => 3
[4,3,1,1] => 1
[4,2,2,1] => 3
[4,2,1,1,1] => 3
[4,1,1,1,1,1] => 3
[3,3,3] => 3
[3,3,2,1] => 1
[3,3,1,1,1] => 1
[3,2,2,2] => 1
[3,2,2,1,1] => 3
[3,2,1,1,1,1] => 1
[3,1,1,1,1,1,1] => 3
[2,2,2,2,1] => 1
[2,2,2,1,1,1] => 1
[2,2,1,1,1,1,1] => 1
[2,1,1,1,1,1,1,1] => 1
[1,1,1,1,1,1,1,1,1] => 1
[10] => 10
[9,1] => 8
[8,2] => 6
[8,1,1] => 8
>>> Load all 304 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The alternating sum of the parts of an integer partition.
For a partition $\lambda = (\lambda_1,\ldots,\lambda_k)$, this is $\lambda_1 - \lambda_2 + \cdots \pm \lambda_k$.
For a partition $\lambda = (\lambda_1,\ldots,\lambda_k)$, this is $\lambda_1 - \lambda_2 + \cdots \pm \lambda_k$.
Code
def statistic(L):
return sum( (-1)^k*L[k] for k in range(len(L)) )
Created
Oct 17, 2017 at 11:36 by Christian Stump
Updated
Sep 07, 2020 at 19:49 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!