Identifier
-
Mp00146:
Dyck paths
—to tunnel matching⟶
Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
St000996: Permutations ⟶ ℤ
Values
[1,0] => [(1,2)] => [2,1] => [1,2] => 0
[1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => [3,2,1,4] => 1
[1,1,0,0] => [(1,4),(2,3)] => [4,3,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [3,2,5,4,1,6] => 2
[1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => [3,2,1,4,5,6] => 1
[1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => [5,4,3,2,1,6] => 1
[1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => [6,3,2,5,4,1] => [1,5,4,2,3,6] => 1
[1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [6,5,4,3,2,1] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [3,2,5,4,7,6,1,8] => 3
[1,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,8)] => [2,1,6,5,4,3,8,7] => [3,2,7,6,5,4,1,8] => 2
[1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => [2,1,8,7,6,5,4,3] => [3,2,1,4,5,6,7,8] => 1
[1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8)] => [4,3,2,1,6,5,8,7] => [5,4,3,2,7,6,1,8] => 2
[1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [4,3,2,1,8,7,6,5] => [5,4,3,2,1,6,7,8] => 1
[1,1,0,1,0,0,1,0] => [(1,6),(2,3),(4,5),(7,8)] => [6,3,2,5,4,1,8,7] => [7,4,3,6,5,2,1,8] => 1
[1,1,0,1,0,1,0,0] => [(1,8),(2,3),(4,5),(6,7)] => [8,3,2,5,4,7,6,1] => [1,5,4,7,6,2,3,8] => 2
[1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => [6,5,4,3,2,1,8,7] => [7,6,5,4,3,2,1,8] => 1
[1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => [8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => 0
[1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,10),(4,9),(5,8),(6,7)] => [2,1,10,9,8,7,6,5,4,3] => [3,2,1,4,5,6,7,8,9,10] => 1
[1,1,0,0,1,1,1,0,0,0] => [(1,4),(2,3),(5,10),(6,9),(7,8)] => [4,3,2,1,10,9,8,7,6,5] => [5,4,3,2,1,6,7,8,9,10] => 1
[1,1,1,0,0,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,10),(8,9)] => [6,5,4,3,2,1,10,9,8,7] => [7,6,5,4,3,2,1,8,9,10] => 1
[1,1,1,1,0,0,0,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10)] => [8,7,6,5,4,3,2,1,10,9] => [9,8,7,6,5,4,3,2,1,10] => 1
[1,1,1,1,1,0,0,0,0,0] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => [10,9,8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8,9,10] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of exclusive left-to-right maxima of a permutation.
This is the number of left-to-right maxima that are not right-to-left minima.
This is the number of left-to-right maxima that are not right-to-left minima.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path D of semilength n, the perfect matching of {1,…,2n} with i<j being matched if Di is an up-step and Dj is the down-step connected to Di by a tunnel.
This is, for a Dyck path D of semilength n, the perfect matching of {1,…,2n} with i<j being matched if Di is an up-step and Dj is the down-step connected to Di by a tunnel.
Map
Lehmer code rotation
Description
Sends a permutation π to the unique permutation τ (of the same length) such that every entry in the Lehmer code of τ is cyclically one larger than the Lehmer code of π.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!