Identifier
Values
([],1) => ([],1) => [1] => [1,0,1,0] => 0
([],2) => ([],1) => [1] => [1,0,1,0] => 0
([(0,1)],2) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([],3) => ([],1) => [1] => [1,0,1,0] => 0
([(1,2)],3) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,2),(1,2)],3) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([],4) => ([],1) => [1] => [1,0,1,0] => 0
([(2,3)],4) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(1,3),(2,3)],4) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([],5) => ([],1) => [1] => [1,0,1,0] => 0
([(3,4)],5) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(2,4),(3,4)],5) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(1,4),(2,4),(3,4)],5) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => [2,2,1] => [1,0,1,0,1,1,0,0] => 0
([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,1),(2,4),(3,4)],5) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([],6) => ([],1) => [1] => [1,0,1,0] => 0
([(4,5)],6) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(3,5),(4,5)],6) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(2,5),(3,4)],6) => ([(1,4),(2,3)],5) => [2,2,1] => [1,0,1,0,1,1,0,0] => 0
([(2,5),(3,4),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(1,2),(3,5),(4,5)],6) => ([(1,4),(2,3)],5) => [2,2,1] => [1,0,1,0,1,1,0,0] => 0
([(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => [2,2,2] => [1,1,0,0,1,1,1,0,0,0] => 0
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,0,1,0,1,0] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([],7) => ([],1) => [1] => [1,0,1,0] => 0
([(5,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(4,6),(5,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
>>> Load all 226 entries. <<<
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(3,6),(4,5)],7) => ([(1,4),(2,3)],5) => [2,2,1] => [1,0,1,0,1,1,0,0] => 0
([(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(2,3),(4,6),(5,6)],7) => ([(1,4),(2,3)],5) => [2,2,1] => [1,0,1,0,1,1,0,0] => 0
([(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,4),(2,3)],5) => [2,2,1] => [1,0,1,0,1,1,0,0] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => ([(1,4),(2,3)],5) => [2,2,1] => [1,0,1,0,1,1,0,0] => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [1,0,1,0,1,1,1,0,0,0] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3)],6) => [2,2,2] => [1,1,0,0,1,1,1,0,0,0] => 0
([(2,3),(4,5),(4,6),(5,6)],7) => ([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,0,1,0,1,0] => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 0
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3)],5) => [2,2,1] => [1,0,1,0,1,1,0,0] => 0
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => ([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,0,1,0,1,0] => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,0,1,0,1,0] => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [1,1,0,0,1,1,0,1,0,0] => 0
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => 0
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 0
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 0
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,5),(1,4),(2,3)],6) => [2,2,2] => [1,1,0,0,1,1,1,0,0,0] => 0
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [1,1,0,0,1,1,0,1,0,0] => 0
([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(0,1),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 0
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 0
([(0,2),(0,3),(1,2),(1,3),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => 0
([(0,6),(0,7),(1,3),(1,4),(2,3),(2,4),(5,6),(5,7)],8) => ([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 0
([(0,6),(0,7),(1,4),(1,5),(2,4),(2,5),(3,6),(3,7),(4,5),(6,7)],8) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 0
([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2] => [1,1,0,0,1,1,0,0,1,0] => 1
([(0,1),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
([(0,2),(0,3),(1,2),(1,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.