Identifier
- St001002: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>3
[1,0,1,0]=>3
[1,1,0,0]=>6
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>5
[1,1,0,0,1,0]=>5
[1,1,0,1,0,0]=>5
[1,1,1,0,0,0]=>10
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,0]=>4
[1,0,1,1,1,0,0,0]=>8
[1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0]=>7
[1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,0]=>4
[1,1,0,1,1,0,0,0]=>7
[1,1,1,0,0,0,1,0]=>8
[1,1,1,0,0,1,0,0]=>7
[1,1,1,0,1,0,0,0]=>8
[1,1,1,1,0,0,0,0]=>15
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,1,1,0,0,0]=>8
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,1,1,0,1,0,0,0]=>6
[1,0,1,1,1,1,0,0,0,0]=>12
[1,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,0,0]=>10
[1,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,1,0,0,1,0,0]=>5
[1,1,0,1,1,0,1,0,0,0]=>5
[1,1,0,1,1,1,0,0,0,0]=>10
[1,1,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,0,0,1,1,0,0]=>10
[1,1,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,0,0]=>9
[1,1,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0]=>10
[1,1,1,1,0,0,0,0,1,0]=>12
[1,1,1,1,0,0,0,1,0,0]=>10
[1,1,1,1,0,0,1,0,0,0]=>10
[1,1,1,1,0,1,0,0,0,0]=>12
[1,1,1,1,1,0,0,0,0,0]=>21
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable modules with projective and injective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
Code
DeclareOperation("numbersprojinjdim1", [IsList]); InstallMethod(numbersprojinjdim1, "for a representation of a quiver", [IsList],0,function(L) local list, n, temp1, Liste_d, j, i, k, r, kk; list:=L; A:=NakayamaAlgebra(GF(3),list); L:=ARQuiver([A,1000])[2]; LL:=Filtered(L,x->ProjDimensionOfModule(x,1)<=1 and InjDimensionOfModule(x,1)<=1); return(Size(LL)); end );
Created
Oct 27, 2017 at 20:49 by Rene Marczinzik
Updated
Oct 27, 2017 at 20:49 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!