Identifier
Values
[1,0] => [1,0] => [1,1,0,0] => [1,0,1,0] => 4
[1,0,1,0] => [1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,1,0,0] => 6
[1,1,0,0] => [1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 5
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0] => 9
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => 7
[1,1,0,0,1,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0] => 7
[1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => 7
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 13
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 10
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 9
[1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => 9
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 8
[1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => 10
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 8
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => 10
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 10
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 8
[1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => 8
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => 8
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 8
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 7
[] => [] => [1,0] => [1,0] => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of indecomposable modules with projective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
Map
promotion
Description
The promotion of the two-row standard Young tableau of a Dyck path.
Dyck paths of semilength $n$ are in bijection with standard Young tableaux of shape $(n^2)$, see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
  • First, build an intermediate Dyck path consisting of $d_1$ north steps, followed by $d_1$ east steps, followed by $d_2$ north steps and $d_2$ east steps, and so on, where $d_i$ is the number of $i-1$'s within the sequence $a$.
    For example, given $a=(0,1,2,2,2,3,1,2)$, we build the path
    $$NE\ NNEE\ NNNNEEEE\ NE.$$
  • Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the $k$th and the $(k+1)$st peak must be filled by $d_k$ east steps and $d_{k+1}$ north steps. In the above example, the rectangle between the second and the third peak must be filled by $2$ east and $4$ north steps, the $2$ being the number of $1$'s in $a$, and $4$ being the number of $2$'s. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a $k-1$ or $k$, respectively. So to fill the $2\times 4$ rectangle, we look for $1$'s and $2$'s in the sequence and see $122212$, so this rectangle gets filled with $ENNNEN$.
    The complete path we obtain in thus
    $$NENNENNNENEEENEE.$$