Identifier
- St001055: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>0
[1]=>1
[2]=>2
[1,1]=>0
[3]=>3
[2,1]=>1
[1,1,1]=>1
[4]=>4
[3,1]=>2
[2,2]=>0
[2,1,1]=>0
[1,1,1,1]=>0
[5]=>5
[4,1]=>3
[3,2]=>1
[3,1,1]=>3
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>1
[6]=>6
[5,1]=>4
[4,2]=>2
[4,1,1]=>2
[3,3]=>0
[3,2,1]=>0
[3,1,1,1]=>2
[2,2,2]=>2
[2,2,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,1,1]=>0
[7]=>7
[6,1]=>5
[5,2]=>3
[5,1,1]=>5
[4,3]=>1
[4,2,1]=>3
[4,1,1,1]=>3
[3,3,1]=>1
[3,2,2]=>3
[3,2,1,1]=>1
[3,1,1,1,1]=>3
[2,2,2,1]=>1
[2,2,1,1,1]=>1
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>1
[8]=>8
[7,1]=>6
[6,2]=>4
[6,1,1]=>4
[5,3]=>2
[5,2,1]=>2
[5,1,1,1]=>4
[4,4]=>0
[4,3,1]=>0
[4,2,2]=>0
[4,2,1,1]=>2
[4,1,1,1,1]=>2
[3,3,2]=>2
[3,3,1,1]=>0
[3,2,2,1]=>0
[3,2,1,1,1]=>0
[3,1,1,1,1,1]=>2
[2,2,2,2]=>0
[2,2,2,1,1]=>0
[2,2,1,1,1,1]=>0
[2,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1]=>0
[9]=>9
[8,1]=>7
[7,2]=>5
[7,1,1]=>7
[6,3]=>3
[6,2,1]=>5
[6,1,1,1]=>5
[5,4]=>1
[5,3,1]=>3
[5,2,2]=>1
[5,2,1,1]=>3
[5,1,1,1,1]=>5
[4,4,1]=>1
[4,3,2]=>3
[4,3,1,1]=>1
[4,2,2,1]=>3
[4,2,1,1,1]=>3
[4,1,1,1,1,1]=>3
[3,3,3]=>3
[3,3,2,1]=>1
[3,3,1,1,1]=>1
[3,2,2,2]=>1
[3,2,2,1,1]=>1
[3,2,1,1,1,1]=>1
[3,1,1,1,1,1,1]=>3
[2,2,2,2,1]=>1
[2,2,2,1,1,1]=>1
[2,2,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1]=>1
[10]=>10
[9,1]=>8
[8,2]=>6
[8,1,1]=>6
[7,3]=>4
[7,2,1]=>4
[7,1,1,1]=>6
[6,4]=>2
[6,3,1]=>2
[6,2,2]=>6
[6,2,1,1]=>4
[6,1,1,1,1]=>4
[5,5]=>0
[5,4,1]=>0
[5,3,2]=>0
[5,3,1,1]=>2
[5,2,2,1]=>2
[5,2,1,1,1]=>2
[5,1,1,1,1,1]=>4
[4,4,2]=>2
[4,4,1,1]=>0
[4,3,3]=>2
[4,3,2,1]=>0
[4,3,1,1,1]=>0
[4,2,2,2]=>2
[4,2,2,1,1]=>2
[4,2,1,1,1,1]=>2
[4,1,1,1,1,1,1]=>2
[3,3,3,1]=>2
[3,3,2,2]=>0
[3,3,2,1,1]=>0
[3,3,1,1,1,1]=>0
[3,2,2,2,1]=>0
[3,2,2,1,1,1]=>0
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>2
[2,2,2,2,2]=>2
[2,2,2,2,1,1]=>0
[2,2,2,1,1,1,1]=>0
[2,2,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>11
[10,1]=>9
[9,2]=>7
[9,1,1]=>9
[8,3]=>5
[8,2,1]=>7
[8,1,1,1]=>7
[7,4]=>3
[7,3,1]=>5
[7,2,2]=>7
[7,2,1,1]=>5
[7,1,1,1,1]=>7
[6,5]=>1
[6,4,1]=>3
[6,3,2]=>1
[6,3,1,1]=>3
[6,2,2,1]=>5
[6,2,1,1,1]=>5
[6,1,1,1,1,1]=>5
[5,5,1]=>1
[5,4,2]=>3
[5,4,1,1]=>1
[5,3,3]=>1
[5,3,2,1]=>3
[5,3,1,1,1]=>3
[5,2,2,2]=>3
[5,2,2,1,1]=>3
[5,2,1,1,1,1]=>3
[5,1,1,1,1,1,1]=>5
[4,4,3]=>3
[4,4,2,1]=>1
[4,4,1,1,1]=>1
[4,3,3,1]=>3
[4,3,2,2]=>1
[4,3,2,1,1]=>1
[4,3,1,1,1,1]=>1
[4,2,2,2,1]=>3
[4,2,2,1,1,1]=>3
[4,2,1,1,1,1,1]=>3
[4,1,1,1,1,1,1,1]=>3
[3,3,3,2]=>1
[3,3,3,1,1]=>3
[3,3,2,2,1]=>1
[3,3,2,1,1,1]=>1
[3,3,1,1,1,1,1]=>1
[3,2,2,2,2]=>3
[3,2,2,2,1,1]=>1
[3,2,2,1,1,1,1]=>1
[3,2,1,1,1,1,1,1]=>1
[3,1,1,1,1,1,1,1,1]=>3
[2,2,2,2,2,1]=>1
[2,2,2,2,1,1,1]=>1
[2,2,2,1,1,1,1,1]=>1
[2,2,1,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>12
[11,1]=>10
[10,2]=>8
[10,1,1]=>8
[9,3]=>6
[9,2,1]=>6
[9,1,1,1]=>8
[8,4]=>4
[8,3,1]=>4
[8,2,2]=>4
[8,2,1,1]=>6
[8,1,1,1,1]=>6
[7,5]=>2
[7,4,1]=>2
[7,3,2]=>6
[7,3,1,1]=>4
[7,2,2,1]=>4
[7,2,1,1,1]=>4
[7,1,1,1,1,1]=>6
[6,6]=>0
[6,5,1]=>0
[6,4,2]=>0
[6,4,1,1]=>2
[6,3,3]=>0
[6,3,2,1]=>2
[6,3,1,1,1]=>2
[6,2,2,2]=>4
[6,2,2,1,1]=>4
[6,2,1,1,1,1]=>4
[6,1,1,1,1,1,1]=>4
[5,5,2]=>2
[5,5,1,1]=>0
[5,4,3]=>2
[5,4,2,1]=>0
[5,4,1,1,1]=>0
[5,3,3,1]=>0
[5,3,2,2]=>2
[5,3,2,1,1]=>2
[5,3,1,1,1,1]=>2
[5,2,2,2,1]=>2
[5,2,2,1,1,1]=>2
[5,2,1,1,1,1,1]=>2
[5,1,1,1,1,1,1,1]=>4
[4,4,4]=>4
[4,4,3,1]=>2
[4,4,2,2]=>0
[4,4,2,1,1]=>0
[4,4,1,1,1,1]=>0
[4,3,3,2]=>0
[4,3,3,1,1]=>2
[4,3,2,2,1]=>0
[4,3,2,1,1,1]=>0
[4,3,1,1,1,1,1]=>0
[4,2,2,2,2]=>0
[4,2,2,2,1,1]=>2
[4,2,2,1,1,1,1]=>2
[4,2,1,1,1,1,1,1]=>2
[4,1,1,1,1,1,1,1,1]=>2
[3,3,3,3]=>0
[3,3,3,2,1]=>0
[3,3,3,1,1,1]=>2
[3,3,2,2,2]=>2
[3,3,2,2,1,1]=>0
[3,3,2,1,1,1,1]=>0
[3,3,1,1,1,1,1,1]=>0
[3,2,2,2,2,1]=>0
[3,2,2,2,1,1,1]=>0
[3,2,2,1,1,1,1,1]=>0
[3,2,1,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1,1]=>2
[2,2,2,2,2,2]=>0
[2,2,2,2,2,1,1]=>0
[2,2,2,2,1,1,1,1]=>0
[2,2,2,1,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Grundy value for the game of removing cells of a row in an integer partition.
Two players alternately remove any positive number of cells in a row of the Ferrers diagram of an integer partition, such that the result is still a Ferrers diagram. The player facing the empty partition looses.
Two players alternately remove any positive number of cells in a row of the Ferrers diagram of an integer partition, such that the result is still a Ferrers diagram. The player facing the empty partition looses.
References
[1] Row, A. Ordered Nim game MathOverflow:286925
Code
@cached_function def statistic(la): """Return the Grundy value of the partition for the game where one may remove a positive number of cells in one row. """ def children(la): if len(la) == 0: return for i in range(len(la)-1): for j in range(1, la[i]-la[i+1]+1): mu = [la[k] if k != i else la[k]-j for k in range(len(la))] yield Partition(mu) for j in range(1, la[-1]+1): mu = la[:-1] + [la[-1]-j] yield Partition(mu) l = [statistic(mu) for mu in children(la)] i = 0 while i in l: i += 1 return i
Created
Nov 25, 2017 at 13:45 by Martin Rubey
Updated
Nov 25, 2017 at 13:45 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!