Identifier
-
Mp00049:
Ordered trees
—to binary tree: left brother = left child⟶
Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001060: Graphs ⟶ ℤ
Values
[[],[],[[]]] => [[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 2
[[],[[],[]]] => [[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 2
[[],[[[]]]] => [[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 2
[[[]],[[]]] => [[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 2
[[],[],[],[[]]] => [[[[.,.],.],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 3
[[],[],[[],[]]] => [[[.,.],.],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[[],[],[[[]]]] => [[[.,.],.],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[[],[[]],[[]]] => [[[.,.],[.,.]],[.,.]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[],[],[]]] => [[.,.],[[[.,.],.],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 3
[[],[[],[[]]]] => [[.,.],[[.,.],[.,.]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[[]],[]]] => [[.,.],[[.,[.,.]],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 3
[[],[[[],[]]]] => [[.,.],[.,[[.,.],.]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 3
[[],[[[[]]]]] => [[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 3
[[[]],[],[[]]] => [[[.,[.,.]],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 3
[[[]],[[],[]]] => [[.,[.,.]],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[[[]],[[[]]]] => [[.,[.,.]],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[[[],[]],[[]]] => [[.,[[.,.],.]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 3
[[[[]]],[[]]] => [[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 3
[[],[],[],[],[[]]] => [[[[[.,.],.],.],.],[.,.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[],[],[[],[]]] => [[[[.,.],.],.],[[.,.],.]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[],[],[[[]]]] => [[[[.,.],.],.],[.,[.,.]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[],[[]],[[]]] => [[[[.,.],.],[.,.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[],[],[]]] => [[[.,.],.],[[[.,.],.],.]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[],[[],[[]]]] => [[[.,.],.],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[],[[[]],[]]] => [[[.,.],.],[[.,[.,.]],.]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[],[[[],[]]]] => [[[.,.],.],[.,[[.,.],.]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[],[[[[]]]]] => [[[.,.],.],[.,[.,[.,.]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[[]],[],[[]]] => [[[[.,.],[.,.]],.],[.,.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[]],[[],[]]] => [[[.,.],[.,.]],[[.,.],.]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[[]],[[[]]]] => [[[.,.],[.,.]],[.,[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[],[[],[]],[[]]] => [[[.,.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[]]],[[]]] => [[[.,.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[],[],[]]] => [[.,.],[[[[.,.],.],.],.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[[],[],[[]]]] => [[.,.],[[[.,.],.],[.,.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[[]],[]]] => [[.,.],[[[.,.],[.,.]],.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[[],[]]]] => [[.,.],[[.,.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[[[]]]]] => [[.,.],[[.,.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[]],[],[]]] => [[.,.],[[[.,[.,.]],.],.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[[[]],[[]]]] => [[.,.],[[.,[.,.]],[.,.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[],[]],[]]] => [[.,.],[[.,[[.,.],.]],.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[[[[]]],[]]] => [[.,.],[[.,[.,[.,.]]],.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[[[],[],[]]]] => [[.,.],[.,[[[.,.],.],.]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[[[],[[]]]]] => [[.,.],[.,[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[[]],[]]]] => [[.,.],[.,[[.,[.,.]],.]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[[[[],[]]]]] => [[.,.],[.,[.,[[.,.],.]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[[[[[]]]]]] => [[.,.],[.,[.,[.,[.,.]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[[]],[],[],[[]]] => [[[[.,[.,.]],.],.],[.,.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[[]],[],[[],[]]] => [[[.,[.,.]],.],[[.,.],.]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[]],[],[[[]]]] => [[[.,[.,.]],.],[.,[.,.]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[]],[[]],[[]]] => [[[.,[.,.]],[.,.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[[]],[[],[],[]]] => [[.,[.,.]],[[[.,.],.],.]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[]],[[],[[]]]] => [[.,[.,.]],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[]],[[[]],[]]] => [[.,[.,.]],[[.,[.,.]],.]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[]],[[[],[]]]] => [[.,[.,.]],[.,[[.,.],.]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[]],[[[[]]]]] => [[.,[.,.]],[.,[.,[.,.]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[],[]],[],[[]]] => [[[.,[[.,.],.]],.],[.,.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[[[]]],[],[[]]] => [[[.,[.,[.,.]]],.],[.,.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[[],[]],[[],[]]] => [[.,[[.,.],.]],[[.,.],.]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[],[]],[[[]]]] => [[.,[[.,.],.]],[.,[.,.]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[[]]],[[],[]]] => [[.,[.,[.,.]]],[[.,.],.]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[[]]],[[[]]]] => [[.,[.,[.,.]]],[.,[.,.]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[[],[],[]],[[]]] => [[.,[[[.,.],.],.]],[.,.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[[],[[]]],[[]]] => [[.,[[.,.],[.,.]]],[.,.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[[[]],[]],[[]]] => [[.,[[.,[.,.]],.]],[.,.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[[[],[]]],[[]]] => [[.,[.,[[.,.],.]]],[.,.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[[[[]]]],[[]]] => [[.,[.,[.,[.,.]]]],[.,.]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
search for individual values
searching the database for the individual values of this statistic
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Map
to binary tree: left brother = left child
Description
Return a binary tree of size n−1 (where n is the size of t, and where t is an ordered tree) by the following recursive rule:
- if x is the left brother of y in t, then x becomes the left child of y;
- if x is the last child of y in t, then x becomes the right child of y,
and removing the root of t.
- if x is the left brother of y in t, then x becomes the left child of y;
- if x is the last child of y in t, then x becomes the right child of y,
and removing the root of t.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!