Identifier
Values
[[],[]] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
[[[]]] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 3
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[]]] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 3
[[[[]]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 2
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 2
[[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 2
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 2
[[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 2
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 2
[[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 2
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => 2
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => 2
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[[],[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[[],[],[],[[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[[],[],[[]],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[[],[[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[[[]],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
[[[[],[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Map
connected complement
Description
The componentwise connected complement of a graph.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
Map
block-cut tree
Description
Sends a graph to its block-cut tree.
The block-cut tree has a vertex for each block and for each cut-vertex of the given graph, and there is an edge for each pair of block and cut-vertex that belongs to that block. A block is a maximal biconnected (or 2-vertex connected) subgraph. A cut-vertex is a vertex whose removal increases the number of connected components.
The block-cut tree has a vertex for each block and for each cut-vertex of the given graph, and there is an edge for each pair of block and cut-vertex that belongs to that block. A block is a maximal biconnected (or 2-vertex connected) subgraph. A cut-vertex is a vertex whose removal increases the number of connected components.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!