Identifier
-
Mp00028:
Dyck paths
—reverse⟶
Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001076: Permutations ⟶ ℤ
Values
[1,0,1,0] => [1,0,1,0] => [1,1,0,0] => [2,1] => 1
[1,1,0,0] => [1,1,0,0] => [1,0,1,0] => [1,2] => 0
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [3,1,2] => 2
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,3,2] => 1
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => [2,1,3] => 1
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,2,3] => 0
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => [2,3,1] => 2
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [4,1,2,3] => 3
[1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [1,4,2,3] => 2
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,2,4,3] => 1
[1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => [2,4,1,3] => 3
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [3,1,2,4] => 2
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0] => [2,1,3,4] => 1
[1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => 0
[1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [2,3,1,4] => 2
[1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => [3,1,4,2] => 3
[1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [1,3,4,2] => 2
[1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => [3,4,1,2] => 4
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => 3
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 4
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [1,5,2,3,4] => 3
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [2,1,5,3,4] => 3
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,2,5,3,4] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,1,3,4] => 4
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [3,1,2,5,4] => 3
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [2,1,3,5,4] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,2,3,5,4] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [2,3,1,5,4] => 3
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [3,1,5,2,4] => 4
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,3,5,2,4] => 3
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [3,5,1,2,4] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,1,4] => 4
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [4,1,2,3,5] => 3
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,4,2,3,5] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [2,4,1,3,5] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => [3,1,2,4,5] => 2
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => 1
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => [2,1,3,4,5] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [2,3,1,4,5] => 2
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [3,1,4,2,5] => 3
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [3,4,1,2,5] => 4
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [2,3,4,1,5] => 3
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,5,3] => 4
[1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,4,2,5,3] => 3
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0] => [2,1,4,5,3] => 3
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,2,4,5,3] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,1,5,3] => 4
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [4,1,5,2,3] => 5
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,4,5,2,3] => 4
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [4,5,1,2,3] => 6
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [2,4,5,1,3] => 5
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [3,1,4,5,2] => 4
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,3,4,5,2] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [3,4,1,5,2] => 5
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => 4
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [3,4,5,1,2] => 6
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,6,2,3,4,5] => 4
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,1,6,3,4,5] => 4
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,6,3,4,5] => 3
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [3,1,2,6,4,5] => 4
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,6,4,5] => 3
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [2,1,3,6,4,5] => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,6,4,5] => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => [2,3,1,6,4,5] => 4
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,1,6,2,4,5] => 5
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,3,6,2,4,5] => 4
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,1,4,5] => 5
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [4,1,2,3,6,5] => 4
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,4,2,3,6,5] => 3
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [2,1,4,3,6,5] => 3
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => [2,4,1,3,6,5] => 4
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [3,1,2,4,6,5] => 3
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,4,6,5] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [2,1,3,4,6,5] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,6,5] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [2,3,1,4,6,5] => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [3,1,4,2,6,5] => 4
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,3,4,2,6,5] => 3
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => [3,4,1,2,6,5] => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [2,3,4,1,6,5] => 4
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,1,2,6,3,5] => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,4,2,6,3,5] => 4
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [2,1,4,6,3,5] => 4
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,2,4,6,3,5] => 3
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [2,4,1,6,3,5] => 5
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,1,6,2,3,5] => 6
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,4,6,2,3,5] => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 7
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,4,6,1,3,5] => 6
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [3,1,4,6,2,5] => 5
>>> Load all 305 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12).
In symbols, for a permutation π this is
min
where \tau_a = (a,a+1) for 1 \leq a \leq n and n+1 is identified with 1.
Put differently, this is the number of cyclically simple transpositions needed to sort a permutation.
In symbols, for a permutation π this is
min
where \tau_a = (a,a+1) for 1 \leq a \leq n and n+1 is identified with 1.
Put differently, this is the number of cyclically simple transpositions needed to sort a permutation.
Map
Delest-Viennot-inverse
Description
Return the Dyck path obtained by applying the inverse of Delest-Viennot's bijection to the corresponding parallelogram polyomino.
Let D be a Dyck path of semilength n. The parallelogram polyomino \gamma(D) is defined as follows: let \tilde D = d_0 d_1 \dots d_{2n+1} be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of \gamma(D) corresponds to the sequence of steps of \tilde D with even indices, and the lower path of \gamma(D) corresponds to the sequence of steps of \tilde D with odd indices.
The Delest-Viennot bijection \beta returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path (\beta^{(-1)}\circ\gamma)(D).
Let D be a Dyck path of semilength n. The parallelogram polyomino \gamma(D) is defined as follows: let \tilde D = d_0 d_1 \dots d_{2n+1} be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of \gamma(D) corresponds to the sequence of steps of \tilde D with even indices, and the lower path of \gamma(D) corresponds to the sequence of steps of \tilde D with odd indices.
The Delest-Viennot bijection \beta returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path (\beta^{(-1)}\circ\gamma)(D).
Map
to 321-avoiding permutation (Krattenthaler)
Description
Krattenthaler's bijection to 321-avoiding permutations.
Draw the path of semilength n in an n\times n square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Draw the path of semilength n in an n\times n square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Map
reverse
Description
The reversal of a Dyck path.
This is the Dyck path obtained by reading the path backwards.
This is the Dyck path obtained by reading the path backwards.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!