Processing math: 100%

Identifier
Values
[[1]] => [(1,2)] => [2,1] => [2,1] => 0
[[1,0],[0,1]] => [(1,4),(2,3)] => [3,4,2,1] => [4,3,1,2] => 0
[[0,1],[1,0]] => [(1,2),(3,4)] => [2,1,4,3] => [2,1,4,3] => 0
[[1,0,0],[0,1,0],[0,0,1]] => [(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => [6,5,4,1,2,3] => 0
[[0,1,0],[1,0,0],[0,0,1]] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => 1
[[1,0,0],[0,0,1],[0,1,0]] => [(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => [6,3,1,5,2,4] => 0
[[0,1,0],[1,-1,1],[0,1,0]] => [(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => [2,1,6,5,3,4] => 1
[[0,0,1],[1,0,0],[0,1,0]] => [(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => [6,3,1,5,2,4] => 0
[[0,1,0],[0,0,1],[1,0,0]] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => 1
[[0,0,1],[0,1,0],[1,0,0]] => [(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => [4,3,1,2,6,5] => 0
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [(1,8),(2,7),(3,6),(4,5)] => [5,6,7,8,4,3,2,1] => [8,7,6,5,1,2,3,4] => 0
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [(1,2),(3,8),(4,5),(6,7)] => [2,1,5,7,4,8,6,3] => [2,1,8,5,3,7,4,6] => 2
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [(1,6),(2,3),(4,5),(7,8)] => [3,5,2,6,4,1,8,7] => [6,3,1,5,2,4,8,7] => 0
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]] => [(1,2),(3,8),(4,5),(6,7)] => [2,1,5,7,4,8,6,3] => [2,1,8,5,3,7,4,6] => 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]] => [(1,6),(2,3),(4,5),(7,8)] => [3,5,2,6,4,1,8,7] => [6,3,1,5,2,4,8,7] => 0
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]] => [(1,6),(2,3),(4,5),(7,8)] => [3,5,2,6,4,1,8,7] => [6,3,1,5,2,4,8,7] => 0
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]] => [(1,2),(3,8),(4,5),(6,7)] => [2,1,5,7,4,8,6,3] => [2,1,8,5,3,7,4,6] => 2
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [(1,4),(2,3),(5,8),(6,7)] => [3,4,2,1,7,8,6,5] => [4,3,1,2,8,7,5,6] => 1
[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => [6,7,8,9,10,5,4,3,2,1] => [10,9,8,7,6,1,2,3,4,5] => 0
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,0,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,1,-1,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,0,1],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,0,0,0,1],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,-1,0,0,1],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[1,-1,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,0,1],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,1,-1,0,1],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the vincular pattern |12-3 in a permutation.
This is the number of occurrences of the pattern 123, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly larger than the first entry of the permutation.
Map
inverse
Description
Sends a permutation to its inverse.
Map
link pattern
Description
Sends an alternating sign matrix to the link pattern of the corresponding fully packed loop configuration.
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.