Processing math: 100%

Identifier
Values
[1,0] => [1,0] => [1,0] => [2,1] => 1
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => [3,1,2] => 2
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => [2,3,1] => 2
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [4,1,2,3] => 3
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [4,3,1,2] => 3
[1,1,0,0,1,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => [2,4,1,3] => 2
[1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => [3,1,4,2] => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [2,3,4,1] => 3
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => 4
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => 4
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [2,5,1,3,4] => 3
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [4,1,2,5,3] => 3
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => 4
[1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => [3,1,5,2,4] => 2
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => 3
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [5,3,1,2,4] => 3
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [5,1,4,2,3] => 4
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [4,3,1,5,2] => 3
[1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => 3
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [2,4,1,5,3] => 2
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [3,1,4,5,2] => 3
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [6,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => 5
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [2,6,1,3,4,5] => 4
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [5,1,2,3,6,4] => 4
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => 5
[1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [3,1,6,2,4,5] => 3
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => 4
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [6,1,5,2,3,4] => 5
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [5,4,1,2,6,3] => 4
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [2,3,6,1,4,5] => 3
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [2,5,1,3,6,4] => 3
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [4,1,2,5,6,3] => 3
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 5
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [4,1,2,6,3,5] => 3
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => 4
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [2,4,1,6,3,5] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [3,1,5,2,6,4] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 4
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [6,1,4,2,3,5] => 5
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => 5
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [6,3,1,2,4,5] => 4
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [6,1,2,5,3,4] => 5
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [6,4,1,5,2,3] => 4
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => 5
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [5,3,1,2,6,4] => 3
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [6,1,4,5,2,3] => 4
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [5,3,4,1,6,2] => 4
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [3,1,4,6,2,5] => 3
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 3
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 3
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [3,1,6,5,2,4] => 3
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [2,5,4,1,6,3] => 3
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [4,3,1,6,2,5] => 3
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [2,6,1,5,3,4] => 4
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [5,1,4,2,6,3] => 4
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [4,3,1,5,6,2] => 4
[1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 4
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [3,1,4,5,6,2] => 4
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [7,1,2,3,4,5,6] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [7,6,1,2,3,4,5] => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,7,1,3,4,5,6] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [6,1,2,3,4,7,5] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [2,6,7,1,3,4,5] => 5
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [5,6,1,2,3,7,4] => 5
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [5,1,2,3,6,7,4] => 4
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [7,6,4,5,1,2,3] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [7,3,1,2,4,5,6] => 5
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [2,3,4,7,1,5,6] => 4
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [5,1,2,3,7,4,6] => 4
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [7,4,1,2,3,5,6] => 5
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [7,3,4,1,2,5,6] => 6
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 5
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 4
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [8,1,2,3,4,5,6,7] => 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,1,2,3,4,5,6] => 7
[1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [2,8,1,3,4,5,6,7] => 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [7,1,2,3,4,5,8,6] => 6
[1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [6,7,8,1,2,3,4,5] => 7
[1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [6,1,8,2,3,4,5,7] => 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [8,3,1,2,4,5,6,7] => 6
[1,0,1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [2,6,7,1,3,4,8,5] => 5
[1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [8,7,4,5,6,1,2,3] => 7
[1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,1,0,0,0,0] => [2,7,6,5,1,3,8,4] => 5
[1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [8,3,6,5,1,7,2,4] => 6
[1,1,0,0,1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [3,1,5,2,7,4,8,6] => 2
[1,1,0,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [8,1,4,2,6,3,5,7] => 7
[1,1,0,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0] => [7,8,4,1,6,2,3,5] => 6
[1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [8,4,1,2,3,5,6,7] => 6
[1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [8,1,2,7,6,3,4,5] => 7
[1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [8,3,4,1,6,7,2,5] => 6
[1,1,1,0,1,0,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,1,0,0,0] => [6,3,8,1,2,7,4,5] => 5
[1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [8,3,1,2,4,7,5,6] => 6
[1,1,1,1,0,0,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0,1,0] => [8,3,1,5,6,2,4,7] => 5
[1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 6
>>> Load all 110 entries. <<<
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,1] => 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [9,1,2,3,4,5,6,7,8] => 8
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,9,1,2,3,4,5,6,7] => 8
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,9,1,3,4,5,6,7,8] => 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [8,1,2,3,4,5,6,9,7] => 7
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [9,7,8,1,2,3,4,5,6] => 8
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [9,3,1,2,4,5,6,7,8] => 7
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [2,3,4,5,6,7,9,1,8] => 7
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,1] => 8
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of pop-stack-sorts needed to sort a permutation.
The pop-stack sorting operator is defined as follows. Process the permutation π from left to right. If the stack is empty or its top element is smaller than the current element, empty the stack completely and append its elements to the output in reverse order. Next, push the current element onto the stack. After having processed the last entry, append the stack to the output in reverse order.
A permutation is t-pop-stack sortable if it is sortable using t pop-stacks in series.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
inverse Kreweras complement
Description
Return the inverse of the Kreweras complement of a Dyck path, regarded as a noncrossing set partition.
To identify Dyck paths and noncrossing set partitions, this maps uses the following classical bijection. The number of down steps after the i-th up step of the Dyck path is the size of the block of the set partition whose maximal element is i. If i is not a maximal element of a block, the (i+1)-st step is also an up step.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.