Identifier
-
Mp00262:
Binary words
—poset of factors⟶
Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001091: Integer partitions ⟶ ℤ
Values
0 => ([(0,1)],2) => [2] => [1,1] => 1
1 => ([(0,1)],2) => [2] => [1,1] => 1
00 => ([(0,2),(2,1)],3) => [3] => [1,1,1] => 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4) => [3,1] => [2,1,1] => 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4) => [3,1] => [2,1,1] => 1
11 => ([(0,2),(2,1)],3) => [3] => [1,1,1] => 2
000 => ([(0,3),(2,1),(3,2)],4) => [4] => [1,1,1,1] => 3
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => [2,2,1,1] => 2
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [4,2] => [2,2,1,1] => 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => [2,2,1,1] => 2
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => [2,2,1,1] => 2
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [4,2] => [2,2,1,1] => 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => [2,2,1,1] => 2
111 => ([(0,3),(2,1),(3,2)],4) => [4] => [1,1,1,1] => 3
0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => [1,1,1,1,1] => 4
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => [2,2,2,1,1] => 3
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9) => [5,3,1] => [3,2,2,1,1] => 2
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => [5,3,1] => [3,2,2,1,1] => 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9) => [5,3,1] => [3,2,2,1,1] => 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => [5,3] => [2,2,2,1,1] => 3
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9) => [5,3,1] => [3,2,2,1,1] => 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => [2,2,2,1,1] => 3
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => [2,2,2,1,1] => 3
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9) => [5,3,1] => [3,2,2,1,1] => 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => [5,3] => [2,2,2,1,1] => 3
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9) => [5,3,1] => [3,2,2,1,1] => 2
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => [5,3,1] => [3,2,2,1,1] => 2
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9) => [5,3,1] => [3,2,2,1,1] => 2
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => [2,2,2,1,1] => 3
1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => [1,1,1,1,1] => 4
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => [1,1,1,1,1,1] => 5
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => [6,4] => [2,2,2,2,1,1] => 4
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10) => [6,4] => [2,2,2,2,1,1] => 4
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
01110 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => [6,4] => [2,2,2,2,1,1] => 4
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => [6,4] => [2,2,2,2,1,1] => 4
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
10010 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
10100 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10) => [6,4] => [2,2,2,2,1,1] => 4
10110 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
11000 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
11010 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
11100 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12) => [6,4,2] => [3,3,2,2,1,1] => 3
11110 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => [6,4] => [2,2,2,2,1,1] => 4
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => [1,1,1,1,1,1] => 5
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => [1,1,1,1,1,1,1] => 6
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12) => [7,5] => [2,2,2,2,2,1,1] => 5
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12) => [7,5] => [2,2,2,2,2,1,1] => 5
011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12) => [7,5] => [2,2,2,2,2,1,1] => 5
100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12) => [7,5] => [2,2,2,2,2,1,1] => 5
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12) => [7,5] => [2,2,2,2,2,1,1] => 5
111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12) => [7,5] => [2,2,2,2,2,1,1] => 5
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => [1,1,1,1,1,1,1] => 6
0000000 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => [8] => [1,1,1,1,1,1,1,1] => 7
1111111 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => [8] => [1,1,1,1,1,1,1,1] => 7
00000000 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => [9] => [1,1,1,1,1,1,1,1,1] => 8
11111111 => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => [9] => [1,1,1,1,1,1,1,1,1] => 8
000000000 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => [10] => [1,1,1,1,1,1,1,1,1,1] => 9
111111111 => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => [10] => [1,1,1,1,1,1,1,1,1,1] => 9
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of parts in an integer partition whose next smaller part has the same size.
In other words, this is the number of distinct parts subtracted from the number of all parts.
In other words, this is the number of distinct parts subtracted from the number of all parts.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!