Identifier
-
Mp00080:
Set partitions
—to permutation⟶
Permutations
St001096: Permutations ⟶ ℤ
Values
{{1}} => [1] => 0
{{1,2}} => [2,1] => 1
{{1},{2}} => [1,2] => 1
{{1,2,3}} => [2,3,1] => 1
{{1,2},{3}} => [2,1,3] => 1
{{1,3},{2}} => [3,2,1] => 2
{{1},{2,3}} => [1,3,2] => 1
{{1},{2},{3}} => [1,2,3] => 2
{{1,2,3,4}} => [2,3,4,1] => 1
{{1,2,3},{4}} => [2,3,1,4] => 2
{{1,2,4},{3}} => [2,4,3,1] => 1
{{1,2},{3,4}} => [2,1,4,3] => 2
{{1,2},{3},{4}} => [2,1,3,4] => 1
{{1,3,4},{2}} => [3,2,4,1] => 2
{{1,3},{2,4}} => [3,4,1,2] => 2
{{1,3},{2},{4}} => [3,2,1,4] => 1
{{1,4},{2,3}} => [4,3,2,1] => 3
{{1},{2,3,4}} => [1,3,4,2] => 1
{{1},{2,3},{4}} => [1,3,2,4] => 2
{{1,4},{2},{3}} => [4,2,3,1] => 2
{{1},{2,4},{3}} => [1,4,3,2] => 1
{{1},{2},{3,4}} => [1,2,4,3] => 1
{{1},{2},{3},{4}} => [1,2,3,4] => 3
{{1,2,3,4,5}} => [2,3,4,5,1] => 1
{{1,2,3,4},{5}} => [2,3,4,1,5] => 2
{{1,2,3,5},{4}} => [2,3,5,4,1] => 1
{{1,2,3},{4,5}} => [2,3,1,5,4] => 1
{{1,2,3},{4},{5}} => [2,3,1,4,5] => 2
{{1,2,4,5},{3}} => [2,4,3,5,1] => 1
{{1,2,4},{3,5}} => [2,4,5,1,3] => 2
{{1,2,4},{3},{5}} => [2,4,3,1,5] => 2
{{1,2,5},{3,4}} => [2,5,4,3,1] => 1
{{1,2},{3,4,5}} => [2,1,4,5,3] => 2
{{1,2},{3,4},{5}} => [2,1,4,3,5] => 2
{{1,2,5},{3},{4}} => [2,5,3,4,1] => 1
{{1,2},{3,5},{4}} => [2,1,5,4,3] => 2
{{1,2},{3},{4,5}} => [2,1,3,5,4] => 2
{{1,2},{3},{4},{5}} => [2,1,3,4,5] => 1
{{1,3,4,5},{2}} => [3,2,4,5,1] => 2
{{1,3,4},{2,5}} => [3,5,4,1,2] => 2
{{1,3,4},{2},{5}} => [3,2,4,1,5] => 2
{{1,3,5},{2,4}} => [3,4,5,2,1] => 1
{{1,3},{2,4,5}} => [3,4,1,5,2] => 1
{{1,3},{2,4},{5}} => [3,4,1,2,5] => 2
{{1,3,5},{2},{4}} => [3,2,5,4,1] => 2
{{1,3},{2,5},{4}} => [3,5,1,4,2] => 1
{{1,3},{2},{4,5}} => [3,2,1,5,4] => 2
{{1,3},{2},{4},{5}} => [3,2,1,4,5] => 1
{{1,4,5},{2,3}} => [4,3,2,5,1] => 2
{{1,4},{2,3,5}} => [4,3,5,1,2] => 1
{{1,4},{2,3},{5}} => [4,3,2,1,5] => 1
{{1,5},{2,3,4}} => [5,3,4,2,1] => 2
{{1},{2,3,4,5}} => [1,3,4,5,2] => 1
{{1},{2,3,4},{5}} => [1,3,4,2,5] => 2
{{1,5},{2,3},{4}} => [5,3,2,4,1] => 2
{{1},{2,3,5},{4}} => [1,3,5,4,2] => 1
{{1},{2,3},{4,5}} => [1,3,2,5,4] => 2
{{1},{2,3},{4},{5}} => [1,3,2,4,5] => 2
{{1,4,5},{2},{3}} => [4,2,3,5,1] => 2
{{1,4},{2,5},{3}} => [4,5,3,1,2] => 2
{{1,4},{2},{3,5}} => [4,2,5,1,3] => 1
{{1,4},{2},{3},{5}} => [4,2,3,1,5] => 1
{{1,5},{2,4},{3}} => [5,4,3,2,1] => 4
{{1},{2,4,5},{3}} => [1,4,3,5,2] => 1
{{1},{2,4},{3,5}} => [1,4,5,2,3] => 2
{{1},{2,4},{3},{5}} => [1,4,3,2,5] => 2
{{1,5},{2},{3,4}} => [5,2,4,3,1] => 2
{{1},{2,5},{3,4}} => [1,5,4,3,2] => 1
{{1},{2},{3,4,5}} => [1,2,4,5,3] => 1
{{1},{2},{3,4},{5}} => [1,2,4,3,5] => 2
{{1,5},{2},{3},{4}} => [5,2,3,4,1] => 2
{{1},{2,5},{3},{4}} => [1,5,3,4,2] => 1
{{1},{2},{3,5},{4}} => [1,2,5,4,3] => 1
{{1},{2},{3},{4,5}} => [1,2,3,5,4] => 1
{{1},{2},{3},{4},{5}} => [1,2,3,4,5] => 4
{{1,2,3,4,5,6}} => [2,3,4,5,6,1] => 1
{{1,2,3,4,5},{6}} => [2,3,4,5,1,6] => 2
{{1,2,3,4,6},{5}} => [2,3,4,6,5,1] => 1
{{1,2,3,4},{5,6}} => [2,3,4,1,6,5] => 1
{{1,2,3,4},{5},{6}} => [2,3,4,1,5,6] => 3
{{1,2,3,5,6},{4}} => [2,3,5,4,6,1] => 1
{{1,2,3,5},{4,6}} => [2,3,5,6,1,4] => 2
{{1,2,3,5},{4},{6}} => [2,3,5,4,1,6] => 2
{{1,2,3,6},{4,5}} => [2,3,6,5,4,1] => 1
{{1,2,3},{4,5,6}} => [2,3,1,5,6,4] => 2
{{1,2,3},{4,5},{6}} => [2,3,1,5,4,6] => 2
{{1,2,3,6},{4},{5}} => [2,3,6,4,5,1] => 1
{{1,2,3},{4,6},{5}} => [2,3,1,6,5,4] => 1
{{1,2,3},{4},{5,6}} => [2,3,1,4,6,5] => 1
{{1,2,3},{4},{5},{6}} => [2,3,1,4,5,6] => 2
{{1,2,4,5,6},{3}} => [2,4,3,5,6,1] => 1
{{1,2,4,5},{3,6}} => [2,4,6,5,1,3] => 2
{{1,2,4,5},{3},{6}} => [2,4,3,5,1,6] => 2
{{1,2,4,6},{3,5}} => [2,4,5,6,3,1] => 1
{{1,2,4},{3,5,6}} => [2,4,5,1,6,3] => 1
{{1,2,4},{3,5},{6}} => [2,4,5,1,3,6] => 3
{{1,2,4,6},{3},{5}} => [2,4,3,6,5,1] => 1
{{1,2,4},{3,6},{5}} => [2,4,6,1,5,3] => 1
{{1,2,4},{3},{5,6}} => [2,4,3,1,6,5] => 2
{{1,2,4},{3},{5},{6}} => [2,4,3,1,5,6] => 2
{{1,2,5,6},{3,4}} => [2,5,4,3,6,1] => 1
>>> Load all 613 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of the overlap set of a permutation.
For a permutation $\pi\in\mathfrak S_n$ this is the number of indices $i < n$ such that the standardisation of $\pi_1\dots\pi_{n-i}$ equals the standardisation of $\pi_{i+1}\dots\pi_n$. In particular, for $n > 1$, the statistic is at least one, because the standardisations of $\pi_1$ and $\pi_n$ are both $1$.
For example, for $\pi=2143$, the standardisations of $21$ and $43$ are equal, and so are the standardisations of $2$ and $3$. Thus, the statistic on $\pi$ is $2$.
For a permutation $\pi\in\mathfrak S_n$ this is the number of indices $i < n$ such that the standardisation of $\pi_1\dots\pi_{n-i}$ equals the standardisation of $\pi_{i+1}\dots\pi_n$. In particular, for $n > 1$, the statistic is at least one, because the standardisations of $\pi_1$ and $\pi_n$ are both $1$.
For example, for $\pi=2143$, the standardisations of $21$ and $43$ are equal, and so are the standardisations of $2$ and $3$. Thus, the statistic on $\pi$ is $2$.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!