Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001097: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => [2] => 0
([],4) => [1,1,1,1] => [1,1,1] => [3] => 0
([(2,3)],4) => [2,1,1] => [1,1] => [2] => 0
([(0,3),(1,2)],4) => [2,2] => [2] => [1,1] => 2
([],5) => [1,1,1,1,1] => [1,1,1,1] => [4] => 0
([(3,4)],5) => [2,1,1,1] => [1,1,1] => [3] => 0
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => [2] => 0
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => [2,1] => 1
([(0,1),(2,4),(3,4)],5) => [3,2] => [2] => [1,1] => 2
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [2] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [2] => [1,1] => 2
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 0
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => [4] => 0
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 0
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [2] => 0
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => [3,1] => 0
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => [2] => 0
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [2,1] => 1
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [2] => [1,1] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [2] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => [2] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => [1,1,1] => 6
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [2] => 0
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => [2,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [2] => [1,1] => 2
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [2,1] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => [1,1] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [2] => [1,1] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,3] => [3] => [1,1,1] => 6
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => [1,1] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [2] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => [1,1,1] => 6
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => [1,1] => 2
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => [6] => 0
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => [5] => 0
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 0
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => [4,1] => 0
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 0
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [3,1] => 0
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [2,1] => 1
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [2,1,1] => 6
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => [1,1,1] => 6
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => [3,2] => 1
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => [2,1] => 1
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2,2] => 2
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [3,1] => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [2,1] => 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => [2,1] => 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => [1,1,1] => 6
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [2,1,1] => 6
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => [1,1,1] => 6
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [2,1] => 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [4,3] => [3] => [1,1,1] => 6
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 0
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => [1,1,1] => 6
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [4,3] => [3] => [1,1,1] => 6
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 0
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2,2] => 2
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,2] => [2] => [1,1] => 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => [1,1,1] => 6
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => [2,1,1] => 6
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [1,1] => 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => [1,1,1] => 6
>>> Load all 216 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders.
For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1].
This statistic records the coefficient of the monomial symmetric function $m_\lambda$ in the formal group law for linear orders, with generating function $f(x) = x/(1-x)$, see [1, sec. 3.4].
This statistic gives the number of Smirnov arrangements of a set of letters with $\lambda_i$ of the $i$th letter, where a Smirnov word is a word with no repeated adjacent letters. e.g., [3,2,1] = > 10 since there are 10 Smirnov rearrangements of the word 'aaabbc': 'ababac', 'ababca', 'abacab', 'abacba', 'abcaba', 'acabab', 'acbaba', 'babaca', 'bacaba', 'cababa'.
For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1].
This statistic records the coefficient of the monomial symmetric function $m_\lambda$ in the formal group law for linear orders, with generating function $f(x) = x/(1-x)$, see [1, sec. 3.4].
This statistic gives the number of Smirnov arrangements of a set of letters with $\lambda_i$ of the $i$th letter, where a Smirnov word is a word with no repeated adjacent letters. e.g., [3,2,1] = > 10 since there are 10 Smirnov rearrangements of the word 'aaabbc': 'ababac', 'ababca', 'abacab', 'abacba', 'abcaba', 'acabab', 'acbaba', 'babaca', 'bacaba', 'cababa'.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!