Identifier
- St001098: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>0
[1,1]=>2
[3]=>0
[2,1]=>5
[1,1,1]=>9
[4]=>0
[3,1]=>16
[2,2]=>36
[2,1,1]=>46
[1,1,1,1]=>64
[5]=>0
[4,1]=>65
[3,2]=>236
[3,1,1]=>268
[2,2,1]=>405
[2,1,1,1]=>497
[1,1,1,1,1]=>625
[6]=>0
[5,1]=>326
[4,2]=>1646
[4,1,1]=>1776
[3,3]=>2658
[3,2,1]=>3682
[3,1,1,1]=>4218
[2,2,2]=>4722
[2,2,1,1]=>5532
[2,1,1,1,1]=>6526
[1,1,1,1,1,1]=>7776
[7]=>0
[6,1]=>1957
[5,2]=>12652
[5,1,1]=>13304
[4,3]=>28620
[4,2,1]=>35529
[4,1,1,1]=>39081
[3,3,1]=>48364
[3,2,2]=>57068
[3,2,1,1]=>64432
[3,1,1,1,1]=>72868
[2,2,2,1]=>77981
[2,2,1,1,1]=>89045
[2,1,1,1,1,1]=>102097
[1,1,1,1,1,1,1]=>117649
[8]=>0
[7,1]=>13700
[6,2]=>107814
[6,1,1]=>111728
[5,3]=>315486
[5,2,1]=>367724
[5,1,1,1]=>394332
[4,4]=>442880
[4,3,1]=>640330
[4,2,2]=>720268
[4,2,1,1]=>791326
[4,1,1,1,1]=>869488
[3,3,2]=>893304
[3,3,1,1]=>990032
[3,2,2,1]=>1139986
[3,2,1,1,1]=>1268850
[3,1,1,1,1,1]=>1414586
[2,2,2,2]=>1323608
[2,2,2,1,1]=>1479570
[2,2,1,1,1,1]=>1657660
[2,1,1,1,1,1,1]=>1861854
[1,1,1,1,1,1,1,1]=>2097152
[9]=>0
[8,1]=>109601
[7,2]=>1015352
[7,1,1]=>1042752
[6,3]=>3654000
[6,2,1]=>4095041
[6,1,1,1]=>4318497
[5,4]=>6659144
[5,3,1]=>8747056
[5,2,2]=>9549024
[5,2,1,1]=>10284472
[5,1,1,1,1]=>11073136
[4,4,1]=>11170353
[4,3,2]=>14293024
[4,3,1,1]=>15573684
[4,2,2,1]=>17351741
[4,2,1,1,1]=>18934393
[4,1,1,1,1,1]=>20673369
[3,3,3]=>16752744
[3,3,2,1]=>20567780
[3,3,1,1,1]=>22547844
[3,2,2,2]=>23169912
[3,2,2,1,1]=>25449884
[3,2,1,1,1,1]=>27987584
[3,1,1,1,1,1,1]=>30816756
[2,2,2,2,1]=>28854249
[2,2,2,1,1,1]=>31813389
[2,2,1,1,1,1,1]=>35128709
[2,1,1,1,1,1,1,1]=>38852417
[1,1,1,1,1,1,1,1,1]=>43046721
[10]=>0
[9,1]=>986410
[8,2]=>10506174
[8,1,1]=>10725376
[7,3]=>44918754
[7,2,1]=>49048662
[7,1,1,1]=>51134166
[6,4]=>101098560
[6,3,1]=>124671082
[6,2,2]=>133419804
[6,2,1,1]=>141609886
[6,1,1,1,1]=>150246880
[5,5]=>131400690
[5,4,1]=>194969340
[5,3,2]=>235686288
[5,3,1,1]=>253180400
[5,2,2,1]=>275721004
[5,2,1,1,1]=>296289948
[5,1,1,1,1,1]=>318436220
[4,4,2]=>283590654
[4,4,1,1]=>305931360
[4,3,3]=>320347536
[4,3,2,1]=>380721282
[4,3,1,1,1]=>411868650
[4,2,2,2]=>419381394
[4,2,2,1,1]=>454084876
[4,2,1,1,1,1]=>491953662
[4,1,1,1,1,1,1]=>533300400
[3,3,3,1]=>435037384
[3,3,2,2]=>481123104
[3,3,2,1,1]=>522258664
[3,3,1,1,1,1]=>567354352
[3,2,2,2,1]=>579502682
[3,2,2,1,1,1]=>630402450
[3,2,1,1,1,1,1]=>686377618
[3,1,1,1,1,1,1,1]=>748011130
[2,2,2,2,2]=>644609030
[2,2,2,2,1,1]=>702317528
[2,2,2,1,1,1,1]=>765944306
[2,2,1,1,1,1,1,1]=>836201724
[2,1,1,1,1,1,1,1,1]=>913906558
[1,1,1,1,1,1,1,1,1,1]=>1000000000
[11]=>0
[10,1]=>9864101
[9,2]=>118687532
[9,1,1]=>120660352
[8,3]=>588005676
[8,2,1]=>630578377
[8,1,1,1]=>652029129
[7,4]=>1579007720
[7,3,1]=>1863969724
[7,2,2]=>1967280808
[7,2,1,1]=>2065378132
[12]=>0
[11,1]=>108505112
[10,2]=>1455009206
[10,1,1]=>1474737408
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees.
For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1].
This statistic records the coefficient of the monomial symmetric function $m_\lambda$ times the product of the factorials of the parts of $\lambda$ in the formal group law for vertex labelled trees, whose reversal of the generating function $f^{(-1)}(x) = x\exp(-x)$, see [1, sec. 3.3]
Fix a set of distinguishable vertices and a coloring of the vertices so that $\lambda_i$ are colored $i$. Then this statistic gives the number of ways of putting a rooted tree on this set of colored vertices so that no leaf is the same color as its parent.
For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1].
This statistic records the coefficient of the monomial symmetric function $m_\lambda$ times the product of the factorials of the parts of $\lambda$ in the formal group law for vertex labelled trees, whose reversal of the generating function $f^{(-1)}(x) = x\exp(-x)$, see [1, sec. 3.3]
Fix a set of distinguishable vertices and a coloring of the vertices so that $\lambda_i$ are colored $i$. Then this statistic gives the number of ways of putting a rooted tree on this set of colored vertices so that no leaf is the same color as its parent.
References
[1] Taylor, J. Formal group laws and hypergraph colorings MathSciNet:3542357
Code
@cached_function def data(n): R.= PowerSeriesRing(SR, default_prec=n+1) f_rev = x*exp(-x) # labelled trees f = f_rev.reverse() f_coefficients = f.list() t = var('t') polynomials = (t*f_rev).exp().list() polynomials = [p.expand() for p in polynomials] return (f_coefficients, polynomials) def statistic(P): f_coefficients, polynomials = data(P.size()) p = SR(1) for i in P: p *= polynomials[i] p = p.expand() return (prod(factorial(e) for e in P) *sum(p.coefficient(t,n) * f_coefficients[n] * factorial(n) for n in range(p.degree(t)+1)).expand())
Created
Feb 02, 2018 at 20:09 by Martin Rubey
Updated
Feb 04, 2018 at 21:51 by Jair Taylor
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!