edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[2]=>0 [1,1]=>1 [3]=>0 [2,1]=>3 [1,1,1]=>4 [4]=>0 [3,1]=>13 [2,2]=>19 [2,1,1]=>22 [1,1,1,1]=>26 [5]=>0 [4,1]=>75 [3,2]=>141 [3,1,1]=>154 [2,2,1]=>188 [2,1,1,1]=>210 [1,1,1,1,1]=>236 [6]=>0 [5,1]=>541 [4,2]=>1231 [4,1,1]=>1306 [3,3]=>1543 [3,2,1]=>1864 [3,1,1,1]=>2018 [2,2,2]=>2118 [2,2,1,1]=>2306 [2,1,1,1,1]=>2516 [1,1,1,1,1,1]=>2752 [7]=>0 [6,1]=>4683 [5,2]=>12453 [5,1,1]=>12994 [4,3]=>18441 [4,2,1]=>21128 [4,1,1,1]=>22434 [3,3,1]=>24508 [3,2,2]=>26834 [3,2,1,1]=>28698 [3,1,1,1,1]=>30716 [2,2,2,1]=>31634 [2,2,1,1,1]=>33940 [2,1,1,1,1,1]=>36456 [1,1,1,1,1,1,1]=>39208 [8]=>0 [7,1]=>47293 [6,2]=>143599 [6,1,1]=>148282 [5,3]=>243343 [5,2,1]=>269872 [5,1,1,1]=>282866 [4,4]=>285811 [4,3,1]=>353188 [4,2,2]=>378234 [4,2,1,1]=>399362 [4,1,1,1,1]=>421796 [3,3,2]=>420982 [3,3,1,1]=>445490 [3,2,2,1]=>480242 [3,2,1,1,1]=>508940 [3,1,1,1,1,1]=>539656 [2,2,2,2]=>518794 [2,2,2,1,1]=>550428 [2,2,1,1,1,1]=>584368 [2,1,1,1,1,1,1]=>620824 [1,1,1,1,1,1,1,1]=>660032 [9]=>0 [8,1]=>545835 [7,2]=>1860981 [7,1,1]=>1908274 [6,3]=>3536121 [6,2,1]=>3837368 [6,1,1,1]=>3985650 [5,4]=>4717425 [5,3,1]=>5566564 [5,2,2]=>5875418 [5,2,1,1]=>6145290 [5,1,1,1,1]=>6428156 [4,4,1]=>6262244 [4,3,2]=>7175750 [4,3,1,1]=>7528938 [4,2,2,1]=>7995602 [4,2,1,1,1]=>8394964 [4,1,1,1,1,1]=>8816760 [3,3,3]=>7788946 [3,3,2,1]=>8704434 [3,3,1,1,1]=>9149924 [3,2,2,2]=>9270770 [3,2,2,1,1]=>9751012 [3,2,1,1,1,1]=>10259952 [3,1,1,1,1,1,1]=>10799608 [2,2,2,2,1]=>10403260 [2,2,2,1,1,1]=>10953688 [2,2,1,1,1,1,1]=>11538056 [2,1,1,1,1,1,1,1]=>12158880 [1,1,1,1,1,1,1,1,1]=>12818912 [10]=>0 [9,1]=>7087261 [8,2]=>26787871 [8,1,1]=>27333706 [7,3]=>56261743 [7,2,1]=>60125584 [7,1,1,1]=>62033858 [6,4]=>83516371 [6,3,1]=>95478004 [6,2,2]=>99760218 [6,2,1,1]=>103597586 [6,1,1,1,1]=>107583236 [5,5]=>94639351 [5,4,1]=>118577356 [5,3,2]=>132308254 [5,3,1,1]=>137874818 [5,2,2,1]=>144868706 [5,2,1,1,1]=>151013996 [5,1,1,1,1,1]=>157442152 [4,4,2]=>144918078 [4,4,1,1]=>151180322 [4,3,3]=>154713034 [4,3,2,1]=>170124098 [4,3,1,1,1]=>177653036 [4,2,2,2]=>179317786 [4,2,2,1,1]=>187313388 [4,2,1,1,1,1]=>195708352 [4,1,1,1,1,1,1]=>204525112 [3,3,3,1]=>182187314 [3,3,2,2]=>192228218 [3,3,2,1,1]=>200932652 [3,3,1,1,1,1]=>210082576 [3,2,2,2,1]=>212210484 [3,2,2,1,1,1]=>221961496 [3,2,1,1,1,1,1]=>232221448 [3,1,1,1,1,1,1,1]=>243021056 [2,2,2,2,2]=>224265028 [2,2,2,2,1,1]=>234668288 [2,2,2,1,1,1,1]=>245621976 [2,2,1,1,1,1,1,1]=>257160032 [2,1,1,1,1,1,1,1,1]=>269318912 [1,1,1,1,1,1,1,1,1,1]=>282137824 [11]=>0 [10,1]=>102247563 [9,2]=>424132773 [9,1,1]=>431220034 [8,3]=>974072121 [8,2,1]=>1029285368 [8,1,1,1]=>1056619074 [7,4]=>1586426721 [7,3,1]=>1772575588 [7,2,2]=>1838425994 [7,2,1,1]=>1898551578 [7,1,1,1,1]=>1960585436 [6,5]=>1993679073 [12]=>0 [11,1]=>1622632573
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees.
For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1].
This statistic records the coefficient of the monomial symmetric function $m_\lambda$ times the product of the factorials of the parts of $\lambda$ in the formal group law for leaf labelled binary trees, whose generating function is the reversal of $f^{(-1)}(x) = 1+2x-\exp(x)$, see [1, sec. 3.2]
Fix a set of distinguishable vertices and a coloring of the vertices so that $\lambda_i$ are colored $i$. This statistic gives the number of rooted trees with leaves labeled with this set of vertices and internal vertices unlabeled so that no pair of 'twin' leaves have the same color.
References
[1] Taylor, J. Formal group laws and hypergraph colorings MathSciNet:3542357
Code
@cached_function
def data(n):
    R. = PowerSeriesRing(SR, default_prec=n+1)
    f_rev = 1+2*x-exp(x) # leaf labelled trees
    f = f_rev.reverse()
    f_coefficients = f.list()
    t = var('t')
    polynomials = (t*f_rev).exp().list()
    polynomials = [p.expand() for p in polynomials]
    return (f_coefficients, polynomials)

def statistic(P):
    f_coefficients, polynomials = data(P.size())
    p = SR(1)
    for i in P:
        p *= polynomials[i]
    p = p.expand()
    return (prod(factorial(e) for e in P)
	    *sum(p.coefficient(t,n) * f_coefficients[n] * factorial(n)
                 for n in range(p.degree(t)+1)).expand())

Created
Feb 02, 2018 at 20:16 by Martin Rubey
Updated
Feb 06, 2018 at 07:23 by Jair Taylor