Identifier
-
Mp00317:
Integer partitions
—odd parts⟶
Binary words
Mp00262: Binary words —poset of factors⟶ Posets
St001105: Posets ⟶ ℤ
Values
[1] => 1 => ([(0,1)],2) => 1
[2] => 0 => ([(0,1)],2) => 1
[1,1] => 11 => ([(0,2),(2,1)],3) => 1
[3] => 1 => ([(0,1)],2) => 1
[2,1] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[4] => 0 => ([(0,1)],2) => 1
[3,1] => 11 => ([(0,2),(2,1)],3) => 1
[2,2] => 00 => ([(0,2),(2,1)],3) => 1
[2,1,1] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[1,1,1,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5] => 1 => ([(0,1)],2) => 1
[4,1] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,2] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[2,2,1] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[1,1,1,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6] => 0 => ([(0,1)],2) => 1
[5,1] => 11 => ([(0,2),(2,1)],3) => 1
[4,2] => 00 => ([(0,2),(2,1)],3) => 1
[4,1,1] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[3,3] => 11 => ([(0,2),(2,1)],3) => 1
[3,2,1] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 4
[3,1,1,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,2,2] => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[7] => 1 => ([(0,1)],2) => 1
[6,1] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[5,2] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[5,1,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[4,3] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[4,2,1] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[3,3,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[3,2,2] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[3,1,1,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[8] => 0 => ([(0,1)],2) => 1
[7,1] => 11 => ([(0,2),(2,1)],3) => 1
[6,2] => 00 => ([(0,2),(2,1)],3) => 1
[6,1,1] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[5,3] => 11 => ([(0,2),(2,1)],3) => 1
[5,2,1] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 4
[5,1,1,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,4] => 00 => ([(0,2),(2,1)],3) => 1
[4,3,1] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[4,2,2] => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[3,3,2] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[3,3,1,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,2,2,2] => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[9] => 1 => ([(0,1)],2) => 1
[8,1] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[7,2] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[7,1,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[6,3] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[6,2,1] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[5,4] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[5,3,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[5,2,2] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[5,1,1,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,4,1] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[4,3,2] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 4
[3,3,3] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[3,3,1,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[10] => 0 => ([(0,1)],2) => 1
[9,1] => 11 => ([(0,2),(2,1)],3) => 1
[8,2] => 00 => ([(0,2),(2,1)],3) => 1
[8,1,1] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[7,3] => 11 => ([(0,2),(2,1)],3) => 1
[7,2,1] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 4
[7,1,1,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[6,4] => 00 => ([(0,2),(2,1)],3) => 1
[6,3,1] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[6,2,2] => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[5,5] => 11 => ([(0,2),(2,1)],3) => 1
[5,4,1] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 4
[5,3,2] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[5,3,1,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,4,2] => 000 => ([(0,3),(2,1),(3,2)],4) => 1
[4,3,3] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[4,2,2,2] => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,3,3,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,2,2,2,2] => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[11] => 1 => ([(0,1)],2) => 1
[10,1] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[9,2] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[9,1,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[8,3] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[8,2,1] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[7,4] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[7,3,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[7,2,2] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[7,1,1,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,5] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[6,4,1] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[6,3,2] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 4
[5,5,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[5,4,2] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[5,3,3] => 111 => ([(0,3),(2,1),(3,2)],4) => 1
[5,3,1,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,4,3] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[3,3,3,1,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[12] => 0 => ([(0,1)],2) => 1
[11,1] => 11 => ([(0,2),(2,1)],3) => 1
>>> Load all 311 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of greedy linear extensions of a poset.
A linear extension of a poset P with elements {x1,…,xn} is greedy, if it can be obtained by the following algorithm:
A linear extension of a poset P with elements {x1,…,xn} is greedy, if it can be obtained by the following algorithm:
- Step 1. Choose a minimal element x1.
- Step 2. Suppose X={x1,…,xi} have been chosen. If there is at least one minimal element of P∖X which is greater than xi then choose xi+1 to be any such minimal element; otherwise, choose xi+1 to be any minimal element of P∖X.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that u<v if and only if u is a factor of v.
This is the partial order on the set of distinct factors of a binary word, such that u<v if and only if u is a factor of v.
Map
odd parts
Description
Return the binary word indicating which parts of the partition are odd.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!