Identifier
Values
[1,0] => [1,0] => [1,1,0,0] => [1,1,0,0] => 0
[1,0,1,0] => [1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 0
[1,1,0,0] => [1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 0
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 0
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => 0
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0] => 0
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => 1
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 0
[1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => 0
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 1
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 0
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 0
[1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => 0
[1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 0
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 1
[1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 0
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 0
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 0
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 0
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 0
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 0
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 0
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 0
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 0
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 0
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 0
[1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 0
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => 0
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => 1
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => 0
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 1
[] => [] => [1,0] => [1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
switch returns and last double rise
Description
An alternative to the Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.