Identifier
Values
['A',1] => ([],1) => ([],1) => ([],1) => 0
['A',2] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(1,2)],3) => 1
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 3
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 5
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The game chromatic index of a graph.
Two players, Alice and Bob, take turns colouring properly any uncolored edge of the graph. Alice begins. If it is not possible for either player to colour a edge, then Bob wins. If the graph is completely colored, Alice wins.
The game chromatic index is the smallest number of colours such that Alice has a winning strategy.
Two players, Alice and Bob, take turns colouring properly any uncolored edge of the graph. Alice begins. If it is not possible for either player to colour a edge, then Bob wins. If the graph is completely colored, Alice wins.
The game chromatic index is the smallest number of colours such that Alice has a winning strategy.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where α≺β if β−α is a simple root.
This is the poset on the set of positive roots of its root system where α≺β if β−α is a simple root.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!