Identifier
-
Mp00158:
Binary words
—alternating inverse⟶
Binary words
Mp00262: Binary words —poset of factors⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001118: Graphs ⟶ ℤ
Values
00 => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
000 => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(2,5),(3,4)],6) => 1
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
100 => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
110 => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(2,5),(3,4)],6) => 1
search for individual values
searching the database for the individual values of this statistic
Description
The acyclic chromatic index of a graph.
An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest.
The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest.
The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
alternating inverse
Description
Sends a binary word $w_1\cdots w_m$ to the binary word $v_1 \cdots v_m$ with $v_i = w_i$ if $i$ is odd and $v_i = 1 - w_i$ if $i$ is even.
This map is used in [1], see Definitions 3.2 and 5.1.
This map is used in [1], see Definitions 3.2 and 5.1.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!