Identifier
Values
['A',1] => ([],1) => [1] => [1] => 1
['A',2] => ([(0,2),(1,2)],3) => [2,1] => [3] => 1
['B',2] => ([(0,3),(1,3),(3,2)],4) => [3,1] => [2,1,1] => 1
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => [2,2,1,1] => 0
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [3,3] => 0
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [3,2,2,1,1] => 7
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [3,2,2,1,1] => 7
['A',4] => ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10) => [4,3,2,1] => [5,5] => 0
['D',4] => ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12) => [5,3,3,1] => [3,3,2,2,1,1] => 21
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^\lambda$.
Map
2-conjugate
Description
Return a partition with the same number of odd parts and number of even parts interchanged with the number of cells with zero leg and odd arm length.
This is a special case of an involution that preserves the sequence of non-zero remainders of the parts under division by $s$ and interchanges the number of parts divisible by $s$ and the number of cells with zero leg length and arm length congruent to $s-1$ modulo $s$.
In particular, for $s=1$ the involution is conjugation, hence the name.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.