Identifier
- St001124: Integer partitions ⟶ ℤ (values match St000159The number of distinct parts of the integer partition., St000318The number of addable cells of the Ferrers diagram of an integer partition.)
Values
=>
Cc0002;cc-rep
[2]=>0
[1,1]=>0
[3]=>0
[2,1]=>1
[1,1,1]=>0
[4]=>0
[3,1]=>1
[2,2]=>0
[2,1,1]=>1
[1,1,1,1]=>0
[5]=>0
[4,1]=>1
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>0
[6]=>0
[5,1]=>1
[4,2]=>1
[4,1,1]=>1
[3,3]=>0
[3,2,1]=>2
[3,1,1,1]=>1
[2,2,2]=>0
[2,2,1,1]=>1
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>0
[7]=>0
[6,1]=>1
[5,2]=>1
[5,1,1]=>1
[4,3]=>1
[4,2,1]=>2
[4,1,1,1]=>1
[3,3,1]=>1
[3,2,2]=>1
[3,2,1,1]=>2
[3,1,1,1,1]=>1
[2,2,2,1]=>1
[2,2,1,1,1]=>1
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>0
[8]=>0
[7,1]=>1
[6,2]=>1
[6,1,1]=>1
[5,3]=>1
[5,2,1]=>2
[5,1,1,1]=>1
[4,4]=>0
[4,3,1]=>2
[4,2,2]=>1
[4,2,1,1]=>2
[4,1,1,1,1]=>1
[3,3,2]=>1
[3,3,1,1]=>1
[3,2,2,1]=>2
[3,2,1,1,1]=>2
[3,1,1,1,1,1]=>1
[2,2,2,2]=>0
[2,2,2,1,1]=>1
[2,2,1,1,1,1]=>1
[2,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1]=>0
[9]=>0
[8,1]=>1
[7,2]=>1
[7,1,1]=>1
[6,3]=>1
[6,2,1]=>2
[6,1,1,1]=>1
[5,4]=>1
[5,3,1]=>2
[5,2,2]=>1
[5,2,1,1]=>2
[5,1,1,1,1]=>1
[4,4,1]=>1
[4,3,2]=>2
[4,3,1,1]=>2
[4,2,2,1]=>2
[4,2,1,1,1]=>2
[4,1,1,1,1,1]=>1
[3,3,3]=>0
[3,3,2,1]=>2
[3,3,1,1,1]=>1
[3,2,2,2]=>1
[3,2,2,1,1]=>2
[3,2,1,1,1,1]=>2
[3,1,1,1,1,1,1]=>1
[2,2,2,2,1]=>1
[2,2,2,1,1,1]=>1
[2,2,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1]=>0
[10]=>0
[9,1]=>1
[8,2]=>1
[8,1,1]=>1
[7,3]=>1
[7,2,1]=>2
[7,1,1,1]=>1
[6,4]=>1
[6,3,1]=>2
[6,2,2]=>1
[6,2,1,1]=>2
[6,1,1,1,1]=>1
[5,5]=>0
[5,4,1]=>2
[5,3,2]=>2
[5,3,1,1]=>2
[5,2,2,1]=>2
[5,2,1,1,1]=>2
[5,1,1,1,1,1]=>1
[4,4,2]=>1
[4,4,1,1]=>1
[4,3,3]=>1
[4,3,2,1]=>3
[4,3,1,1,1]=>2
[4,2,2,2]=>1
[4,2,2,1,1]=>2
[4,2,1,1,1,1]=>2
[4,1,1,1,1,1,1]=>1
[3,3,3,1]=>1
[3,3,2,2]=>1
[3,3,2,1,1]=>2
[3,3,1,1,1,1]=>1
[3,2,2,2,1]=>2
[3,2,2,1,1,1]=>2
[3,2,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1]=>1
[2,2,2,2,2]=>0
[2,2,2,2,1,1]=>1
[2,2,2,1,1,1,1]=>1
[2,2,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1]=>0
[5,4,2]=>2
[5,4,1,1]=>2
[5,3,3]=>1
[5,3,2,1]=>3
[5,3,1,1,1]=>2
[5,2,2,2]=>1
[5,2,2,1,1]=>2
[4,4,3]=>1
[4,4,2,1]=>2
[4,4,1,1,1]=>1
[4,3,3,1]=>2
[4,3,2,2]=>2
[4,3,2,1,1]=>3
[4,2,2,2,1]=>2
[3,3,3,2]=>1
[3,3,3,1,1]=>1
[3,3,2,2,1]=>2
[6,4,2]=>2
[5,4,3]=>2
[5,4,2,1]=>3
[5,4,1,1,1]=>2
[5,3,3,1]=>2
[5,3,2,2]=>2
[5,3,2,1,1]=>3
[5,2,2,2,1]=>2
[4,4,3,1]=>2
[4,4,2,2]=>1
[4,4,2,1,1]=>2
[4,3,3,2]=>2
[4,3,3,1,1]=>2
[4,3,2,2,1]=>3
[3,3,3,2,1]=>2
[3,3,2,2,1,1]=>2
[5,4,3,1]=>3
[5,4,2,2]=>2
[5,4,2,1,1]=>3
[5,3,3,2]=>2
[5,3,3,1,1]=>2
[5,3,2,2,1]=>3
[4,4,3,2]=>2
[4,4,3,1,1]=>2
[4,4,2,2,1]=>2
[4,3,3,2,1]=>3
[5,4,3,2]=>3
[5,4,3,1,1]=>3
[5,4,2,2,1]=>3
[5,3,3,2,1]=>3
[4,4,3,2,1]=>3
[5,4,3,2,1]=>4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The multiplicity of the standard representation in the Kronecker square corresponding to a partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{(n-1)1}$, for $\lambda\vdash n > 1$. For $n\leq1$ the statistic is undefined.
It follows from [3, Prop.4.1] (or, slightly easier from [3, Thm.4.2]) that this is one less than St000159The number of distinct parts of the integer partition., the number of distinct parts of the partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{(n-1)1}$, for $\lambda\vdash n > 1$. For $n\leq1$ the statistic is undefined.
It follows from [3, Prop.4.1] (or, slightly easier from [3, Thm.4.2]) that this is one less than St000159The number of distinct parts of the integer partition., the number of distinct parts of the partition.
References
[1] wikipedia:Kronecker coefficient
[2] https://groupprops.subwiki.org/wiki/Standard_representation
[3] Ini Liu, R. A simplified Kronecker rule for one hook shape arXiv:1412.2180
[2] https://groupprops.subwiki.org/wiki/Standard_representation
[3] Ini Liu, R. A simplified Kronecker rule for one hook shape arXiv:1412.2180
Code
from sage.libs.symmetrica.symmetrica import charvalue_symmetrica as chv def kronecker_coefficient(*partns): if partns == (): return 1 else: return sum(mul(chv(la,mu) for la in partns)/mu.centralizer_size() for mu in Partitions(sum(partns[0]))) def statistic(la): if not la: raise ValueError("partition must not be empty") return kronecker_coefficient(la,la,[la.size()-1,1])
Created
Mar 18, 2018 at 07:46 by Martin Rubey
Updated
Jun 25, 2021 at 10:01 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!