Identifier
Values
([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => [1,1] => 0
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [3] => 0
([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => [1,1] => 0
([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => [1,1,1] => 0
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => [1,1] => 0
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => [1,1,1] => 0
([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => [3] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 0
([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => [1,1] => 0
([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => [1,1,1] => 0
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => 0
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => [1,1] => 0
([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => [1,1,1] => 0
([(0,1),(2,4),(3,4)],5) => ([(0,1),(2,4),(3,4)],5) => [1,1,1] => 0
([(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => [3] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6,1] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6,1] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [10] => 0
([(3,5),(4,5)],6) => ([(3,5),(4,5)],6) => [1,1] => 0
([(2,5),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => [1,1,1] => 0
([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => 0
([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => [1,1] => 0
([(2,5),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => [1,1,1] => 0
([(1,2),(3,5),(4,5)],6) => ([(1,2),(3,5),(4,5)],6) => [1,1,1] => 0
([(3,4),(3,5),(4,5)],6) => ([(3,4),(3,5),(4,5)],6) => [3] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [9] => 0
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => [1,1,1] => 0
([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => 0
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => 1
>>> Load all 510 entries. <<<
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [5,1,1] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8,1] => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8,1] => 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8,1] => 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => 0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [7] => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [6,1] => 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8,1] => 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [5,1,1] => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,3] => 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,3] => 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [10] => 0
([(4,6),(5,6)],7) => ([(4,6),(5,6)],7) => [1,1] => 0
([(3,6),(4,6),(5,6)],7) => ([(3,6),(4,6),(5,6)],7) => [1,1,1] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => 0
([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => [1,1] => 0
([(3,6),(4,5),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => [1,1,1] => 0
([(2,3),(4,6),(5,6)],7) => ([(2,3),(4,6),(5,6)],7) => [1,1,1] => 0
([(4,5),(4,6),(5,6)],7) => ([(4,5),(4,6),(5,6)],7) => [3] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => 0
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1,1] => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1] => 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1,1] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1,1] => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => [1,1,1] => 0
([(2,6),(3,5),(4,5),(4,6)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => ([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => 0
([(2,3),(4,5),(4,6),(5,6)],7) => ([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => 0
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => 0
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3] => 0
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => 0
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [5,1] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 1
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [4,1,1,1] => 1
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [5,1,1] => 1
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => ([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [1,1,1,1,1] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [1,1,1,1,1] => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1] => 1
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1] => 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1] => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => 0
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1,1] => 1
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => 1
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1,1] => 1
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1] => 1
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => 1
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => 1
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1,1] => 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => 1
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => 1
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => [4,1,1,1] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,1,1,1,1] => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [5,1,1,1] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => 1
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => 1
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => 1
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1,1] => 1
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => [6] => 0
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => 0
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => [6,1] => 1
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,1] => 1
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => 1
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7,1] => 1
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9,1] => 1
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [3,1,1,1,1] => 1
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => 1
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,4] => 0
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => ([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,1,1,1] => 1
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,1] => 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => 1
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,5] => 0
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,5] => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) => [7,1] => 1
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => [7,1] => 1
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [8,1] => 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => 0
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,3] => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [1,1,1,1,1,1] => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1] => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,1,1,1] => 1
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => 1
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => ([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => [3,1,1,1,1] => 1
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [4,3,1] => 2
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => 1
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [5,3] => 1
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => 1
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => 1
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,5),(1,6),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => 0
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => ([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1] => 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,1] => 1
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 1
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1,1] => 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 1
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3,1] => 2
([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3,1] => 2
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [8] => 0
([(0,5),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,4),(1,5),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,3),(1,5),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,5),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => 1
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8,1] => 1
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 0
([(0,4),(1,5),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,5),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,3,1,1] => 1
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3,1] => 2
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3] => 0
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3,1] => 2
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => [7] => 0
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [7,1] => 1
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 0
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) => [8] => 0
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1,1] => 1
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => ([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [6,1,1] => 1
([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) => [7,1] => 1
([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 0
([(0,5),(1,2),(1,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1] => 1
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,6),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [9] => 0
([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(4,5),(4,6),(5,6)],7) => [9] => 0
([(0,5),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [8,1] => 1
([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8,1] => 1
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9] => 0
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [9,1] => 1
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [7,1] => 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [8,1] => 1
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1] => 1
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => [9] => 0
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => [4,3,1] => 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6,3] => 1
([(0,2),(1,4),(1,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,4),(1,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,3] => 1
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => [8,1] => 1
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 0
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) => [8,1] => 1
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7,1,1] => 1
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [9] => 0
([(0,4),(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,1),(0,6),(1,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,1),(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [9] => 0
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [8,1] => 1
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => ([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => [9] => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6)],7) => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6)],7) => [8,1] => 1
([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => 1
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => 1
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => 1
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 1
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => 1
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => 1
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [5,1,1,1] => 1
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,4] => 1
([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,3,1] => 2
([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,1,1,1] => 1
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,3,1] => 2
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10] => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => [10] => 0
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => [9] => 0
([(0,2),(0,6),(1,2),(1,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(0,6),(1,2),(1,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9] => 0
([(0,4),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => ([(0,4),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [9] => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) => [10] => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [10] => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [10] => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6)],7) => [10] => 0
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) => [10] => 0
([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => ([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [5,3,1] => 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,5] => 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,3,1] => 2
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7) => [10] => 0
search for individual values
searching the database for the individual values of this statistic
Description
The multiplicity of the standard representation in the Kronecker square corresponding to a partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{(n-1)1}$, for $\lambda\vdash n > 1$. For $n\leq1$ the statistic is undefined.
It follows from [3, Prop.4.1] (or, slightly easier from [3, Thm.4.2]) that this is one less than St000159The number of distinct parts of the integer partition., the number of distinct parts of the partition.
Map
Ore closure
Description
The Ore closure of a graph.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.