edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>1 ['A',2]=>8 ['B',2]=>12 ['G',2]=>20 ['A',3]=>60 ['B',3]=>152 ['C',3]=>152 ['A',4]=>482 ['B',4]=>2148 ['C',4]=>2148 ['D',4]=>892 ['F',4]=>8920 ['A',5]=>4268 ['B',5]=>35070 ['C',5]=>35070 ['D',5]=>14874 ['A',6]=>41934 ['B',6]=>679152 ['C',6]=>679152 ['D',6]=>287438 ['E',6]=>846476 ['A',7]=>457782
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of pairs in the Weyl group of given type with mu-coefficient of the Kazhdan Lusztig polynomial being non-zero.
The $\mu$-coefficient of the Kazhdan-Lusztig polynomial $P_{u,w}(q)$ is the coefficient of $q^{\frac{l(w)-l(u)-1}{2}}$ in $P_{u,w}(q)$.
References
[1] Vogan, D. Number of pairs of permutation in $S_n$ whose µ-coefficient (of their Kazhdan Lusztig polynomial) is non-zero MathOverflow:298028
[2] Warrington, G. S. Equivalence classes for the µ-coefficient of Kazhdan-Lusztig polynomials in $S_n$ MathSciNet:2859901
Code
def statistic(C):
    """                                                                                                                                               
    sage: statistic(CartanType(["A", 4]))                                                                                                             
    482                                                                                                                                               
    """
    W = CoxeterGroup(C, implementation='coxeter3')
    r = 0
    for u in W:
	U = (W(v) for v in W.bruhat_interval(u, W.long_element()))
	next(U)
	for v in U:
            ldiff = v.length()-u.length()-1
            if is_even(ldiff):
		p = W.kazhdan_lusztig_polynomial(u, v)
		if p[ldiff//2] != 0:
                    r += 1
    return r

Created
Apr 18, 2018 at 22:32 by Martin Rubey
Updated
Apr 18, 2018 at 22:32 by Martin Rubey