Loading [MathJax]/jax/output/HTML-CSS/jax.js

Identifier
Values
['A',1] => ([],1) => [1] => [1,0,1,0] => 0
['A',2] => ([(0,2),(1,2)],3) => [2,1] => [1,0,1,0,1,0] => 0
['B',2] => ([(0,3),(1,3),(3,2)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 1
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 1
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,0,1,0,1,0] => 0
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [1,1,1,0,1,0,0,1,0,0,1,0] => 1
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [1,1,1,0,1,0,0,1,0,0,1,0] => 1
['A',4] => ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10) => [4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => 0
['D',4] => ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12) => [5,3,3,1] => [1,1,0,1,0,0,1,1,0,0,1,0] => 1
['A',5] => ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15) => [5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
['A',6] => ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21) => [6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of 1-rises at odd height of a Dyck path.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition (c1c0,c2c1,c3c2,), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1a0,a2a1,a3a2,), where ak is the maximum cardinality of a union of k antichains of the poset.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where αβ if βα is a simple root.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.