Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001177: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => [1] => 0
([],4) => [1,1,1,1] => [1,1,1] => [1,1] => 2
([(2,3)],4) => [2,1,1] => [1,1] => [1] => 0
([],5) => [1,1,1,1,1] => [1,1,1,1] => [1,1,1] => 6
([(3,4)],5) => [2,1,1,1] => [1,1,1] => [1,1] => 2
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 0
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => [1] => 0
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 0
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 12
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => [1,1,1] => 6
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 2
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => [1,1] => 2
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 0
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => [2] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 0
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,1,1,1,1] => 20
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 12
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 6
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 2
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => [1,1,1] => 6
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 2
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 2
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 6
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 2
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => [2,1] => 3
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 0
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 2
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => [1] => 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 0
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 0
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 6
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(3,7),(4,7),(5,7),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 2
([],8) => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 30
([(4,7),(5,6)],8) => [2,2,1,1,1,1] => [2,1,1,1,1] => [1,1,1,1] => 12
([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 6
([(4,6),(4,7),(5,6),(5,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 6
([(2,7),(3,7),(4,6),(5,6)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 2
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 2
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 2
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,1,1] => [2,1,1] => [1,1] => 2
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 0
([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 0
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 0
([(0,7),(1,6),(2,5),(3,4)],8) => [2,2,2,2] => [2,2,2] => [2,2] => 6
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2] => [2,2] => [2] => 0
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2] => [2,2] => [2] => 0
([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9) => [7,1,1] => [1,1] => [1] => 0
>>> Load all 132 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
Twice the mean value of the major index among all standard Young tableaux of a partition.
For a partition $\lambda$ of $n$, this mean value is given in [1, Proposition 3.1] by
$$\frac{1}{2}\Big(\binom{n}{2} - \sum_i\binom{\lambda_i}{2} + \sum_i\binom{\lambda_i'}{2}\Big),$$
where $\lambda_i$ is the size of the $i$-th row of $\lambda$ and $\lambda_i'$ is the size of the $i$-th column.
For a partition $\lambda$ of $n$, this mean value is given in [1, Proposition 3.1] by
$$\frac{1}{2}\Big(\binom{n}{2} - \sum_i\binom{\lambda_i}{2} + \sum_i\binom{\lambda_i'}{2}\Big),$$
where $\lambda_i$ is the size of the $i$-th row of $\lambda$ and $\lambda_i'$ is the size of the $i$-th column.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!