Identifier
- St001179: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>3
[1,1,0,0]=>3
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>4
[1,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>5
[1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,0]=>4
[1,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,0,1,0]=>5
[1,1,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>5
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,0,0]=>6
[1,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,0,0,1,0,1,0]=>5
[1,1,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,0,1,0]=>5
[1,1,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0]=>5
[1,1,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,0,0]=>5
[1,1,1,0,1,1,0,0,0,0]=>6
[1,1,1,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,0,0,0]=>6
[1,1,1,1,1,0,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,1,0,0]=>6
[1,0,1,0,1,1,0,1,1,0,0,0]=>5
[1,0,1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,0,1,1,1,0,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,0,1,1,1,1,0,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,1,0,0,1,0]=>7
[1,0,1,1,0,0,1,1,0,1,0,0]=>5
[1,0,1,1,0,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,1,0,0,1,0]=>6
[1,0,1,1,0,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,0,1,1,0,0,0]=>6
[1,0,1,1,0,1,1,0,0,0,1,0]=>5
[1,0,1,1,0,1,1,0,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,1,0,0,0]=>5
[1,0,1,1,0,1,1,1,0,0,0,0]=>5
[1,0,1,1,1,0,0,0,1,0,1,0]=>6
[1,0,1,1,1,0,0,0,1,1,0,0]=>7
[1,0,1,1,1,0,0,1,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,1,0,0]=>6
[1,0,1,1,1,0,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,1,0,0,1,0,0]=>5
[1,0,1,1,1,0,1,0,1,0,0,0]=>6
[1,0,1,1,1,0,1,1,0,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0,1,0]=>7
[1,0,1,1,1,1,0,0,0,1,0,0]=>7
[1,0,1,1,1,1,0,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,1,0,0]=>5
[1,1,0,0,1,0,1,1,1,0,0,0]=>6
[1,1,0,0,1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,1,0,0]=>6
[1,1,0,0,1,1,0,1,1,0,0,0]=>5
[1,1,0,0,1,1,1,0,0,0,1,0]=>7
[1,1,0,0,1,1,1,0,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,1,0,0,0]=>4
[1,1,0,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,1,0,0,1,1,0,1,0,0]=>5
[1,1,0,1,0,0,1,1,1,0,0,0]=>6
[1,1,0,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,1,0,0]=>5
[1,1,0,1,0,1,0,1,1,0,0,0]=>5
[1,1,0,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,0,1,1,0,0,1,0,0]=>5
[1,1,0,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,0,0]=>6
[1,1,0,1,1,0,0,0,1,0,1,0]=>6
[1,1,0,1,1,0,0,0,1,1,0,0]=>7
[1,1,0,1,1,0,0,1,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,1,0,0]=>6
[1,1,0,1,1,0,0,1,1,0,0,0]=>5
[1,1,0,1,1,0,1,0,0,0,1,0]=>5
[1,1,0,1,1,0,1,0,0,1,0,0]=>6
[1,1,0,1,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,1,0,0,0,0]=>5
[1,1,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,0,1,1,1,0,0,0,1,0,0]=>7
[1,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,0,0]=>4
[1,1,0,1,1,1,1,0,0,0,0,0]=>7
[1,1,1,0,0,0,1,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,0,1,1,0,0]=>6
[1,1,1,0,0,0,1,1,0,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,1,0,0]=>5
[1,1,1,0,0,0,1,1,1,0,0,0]=>7
[1,1,1,0,0,1,0,0,1,0,1,0]=>6
[1,1,1,0,0,1,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,1,0,0]=>5
[1,1,1,0,0,1,0,1,1,0,0,0]=>6
[1,1,1,0,0,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,1,0,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,1,0,0,0]=>5
[1,1,1,0,0,1,1,1,0,0,0,0]=>7
[1,1,1,0,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,1,0,0,0]=>5
[1,1,1,0,1,0,1,1,0,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0,1,0]=>7
[1,1,1,0,1,1,0,0,0,1,0,0]=>5
[1,1,1,0,1,1,0,0,1,0,0,0]=>5
[1,1,1,0,1,1,0,1,0,0,0,0]=>5
[1,1,1,0,1,1,1,0,0,0,0,0]=>7
[1,1,1,1,0,0,0,0,1,0,1,0]=>6
[1,1,1,1,0,0,0,0,1,1,0,0]=>7
[1,1,1,1,0,0,0,1,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,1,0,0]=>6
[1,1,1,1,0,0,0,1,1,0,0,0]=>7
[1,1,1,1,0,0,1,0,0,0,1,0]=>6
[1,1,1,1,0,0,1,0,0,1,0,0]=>6
[1,1,1,1,0,0,1,0,1,0,0,0]=>6
[1,1,1,1,0,0,1,1,0,0,0,0]=>7
[1,1,1,1,0,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,1,0,0,0,0]=>6
[1,1,1,1,0,1,1,0,0,0,0,0]=>7
[1,1,1,1,1,0,0,0,0,0,1,0]=>7
[1,1,1,1,1,0,0,0,0,1,0,0]=>7
[1,1,1,1,1,0,0,0,1,0,0,0]=>7
[1,1,1,1,1,0,0,1,0,0,0,0]=>7
[1,1,1,1,1,0,1,0,0,0,0,0]=>7
[1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra.
Code
DeclareOperation("numberindinjwithprojdimatmostk",[IsList]); InstallMethod(numberindinjwithprojdimatmostk, "for a representation of a quiver", [IsList],0,function(LIST) local A,k,simA,WW,injA; A:=LIST[1]; k:=LIST[2]; injA:=IndecInjectiveModules(A); WW:=Filtered(injA,x->ProjDimensionOfModule(x,30)<=k); return(Size(WW)); end);
Created
May 12, 2018 at 00:35 by Rene Marczinzik
Updated
May 12, 2018 at 00:35 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!