Identifier
- St001184: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>1
[1,1,0,0]=>2
[1,0,1,0,1,0]=>1
[1,0,1,1,0,0]=>2
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>3
[1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,0,0]=>4
[1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,0,1,1,0,0]=>2
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,0,1,1,1,1,0,0,0,0]=>4
[1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,0,0,1,0]=>1
[1,0,1,1,0,1,1,0,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0,1,0]=>1
[1,0,1,1,1,0,0,0,1,1,0,0]=>2
[1,0,1,1,1,0,0,1,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0,1,0]=>1
[1,0,1,1,1,1,0,0,0,1,0,0]=>2
[1,0,1,1,1,1,0,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,1,0,0,0,0]=>4
[1,0,1,1,1,1,1,0,0,0,0,0]=>5
[1,1,0,0,1,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,1,0,0]=>2
[1,1,0,0,1,1,0,1,1,0,0,0]=>3
[1,1,0,0,1,1,1,0,0,0,1,0]=>1
[1,1,0,0,1,1,1,0,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,1,0,0,0]=>3
[1,1,0,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>1
[1,1,0,1,1,0,0,0,1,1,0,0]=>2
[1,1,0,1,1,0,0,1,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,1,0,0,0]=>3
[1,1,0,1,1,0,1,1,0,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0,1,0]=>1
[1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,1,0,0,0,0]=>4
[1,1,0,1,1,1,1,0,0,0,0,0]=>5
[1,1,1,0,0,0,1,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,0,1,1,0,0]=>2
[1,1,1,0,0,0,1,1,0,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,1,0,0]=>2
[1,1,1,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,0,0,1,0,0,1,0,1,0]=>1
[1,1,1,0,0,1,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,1,0,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0]=>4
[1,1,1,0,1,1,0,0,0,0,1,0]=>1
[1,1,1,0,1,1,0,0,0,1,0,0]=>2
[1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0]=>4
[1,1,1,0,1,1,1,0,0,0,0,0]=>5
[1,1,1,1,0,0,0,0,1,0,1,0]=>1
[1,1,1,1,0,0,0,0,1,1,0,0]=>2
[1,1,1,1,0,0,0,1,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>3
[1,1,1,1,0,0,1,0,0,0,1,0]=>1
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,1,0,0,0,0]=>4
[1,1,1,1,0,1,1,0,0,0,0,0]=>5
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,0,0,1,0,0,0]=>3
[1,1,1,1,1,0,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,1,0,0,0,0,0]=>5
[1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra.
Code
DeclareOperation("gradeofmodule",[IsList]); InstallMethod(gradeofmodule, "for a representation of a quiver", [IsList],0,function(LIST) local A,M,RegA,g,temmi,UT; A:=LIST[1]; M:=LIST[2]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); g:=GorensteinDimensionOfAlgebra(A,30); temmi:=[];Append(temmi,[Size(HomOverAlgebra(M,RegA))]); for i in [0..g-1] do Append(temmi,[Size(ExtOverAlgebra(NthSyzygy(M,i),RegA)[2])]);od; UT:=Filtered([0..g],x->temmi[x+1]>0); return(Minimum(UT)); end); DeclareOperation("numberindinjwithgradeatleastk",[IsList]); InstallMethod(numberindinjwithgradeatleastk, "for a representation of a quiver", [IsList],0,function(LIST) local A,k,simA,WW,injA; A:=LIST[1]; k:=LIST[2]; injA:=IndecInjectiveModules(A); WW:=Filtered(injA,x->gradeofmodule([A,x])>=k); return(Size(WW)); end);
Created
May 12, 2018 at 00:06 by Rene Marczinzik
Updated
May 12, 2018 at 00:06 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!