edit this statistic or download as text // json
Identifier
  • St001187: Dyck paths ⟶ ℤ (values match St000024The number of double up and double down steps of a Dyck path., St000443The number of long tunnels of a Dyck path., St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path., St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra.)
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>1 [1,1,0,0]=>2 [1,0,1,0,1,0]=>1 [1,0,1,1,0,0]=>2 [1,1,0,0,1,0]=>2 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>3 [1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,1,0,0]=>2 [1,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,0]=>2 [1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,0,1,0]=>2 [1,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,0,1,0]=>2 [1,1,0,1,0,1,0,0]=>2 [1,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>4 [1,0,1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,0]=>2 [1,0,1,0,1,1,0,0,1,0]=>2 [1,0,1,0,1,1,0,1,0,0]=>2 [1,0,1,0,1,1,1,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0]=>2 [1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,1,0,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,1,0,0]=>2 [1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,0,0]=>3 [1,0,1,1,1,1,0,0,0,0]=>4 [1,1,0,0,1,0,1,0,1,0]=>2 [1,1,0,0,1,0,1,1,0,0]=>3 [1,1,0,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,0,0]=>4 [1,1,0,1,0,0,1,0,1,0]=>2 [1,1,0,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,1,0,0,1,0]=>2 [1,1,0,1,0,1,0,1,0,0]=>2 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,1,0,0,1,0,0]=>3 [1,1,0,1,1,0,1,0,0,0]=>3 [1,1,0,1,1,1,0,0,0,0]=>4 [1,1,1,0,0,0,1,0,1,0]=>3 [1,1,1,0,0,0,1,1,0,0]=>4 [1,1,1,0,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,0,0,1,0]=>3 [1,1,1,0,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,1,0,0,0]=>3 [1,1,1,0,1,1,0,0,0,0]=>4 [1,1,1,1,0,0,0,0,1,0]=>4 [1,1,1,1,0,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,0,0]=>4 [1,1,1,1,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0]=>5 [1,0,1,0,1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,0,1,0,1,1,0,0]=>2 [1,0,1,0,1,0,1,1,0,0,1,0]=>2 [1,0,1,0,1,0,1,1,0,1,0,0]=>2 [1,0,1,0,1,0,1,1,1,0,0,0]=>3 [1,0,1,0,1,1,0,0,1,0,1,0]=>2 [1,0,1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,0,1,1,0,1,0,0,1,0]=>2 [1,0,1,0,1,1,0,1,0,1,0,0]=>2 [1,0,1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,0,1,1,1,0,1,0,0,0]=>3 [1,0,1,0,1,1,1,1,0,0,0,0]=>4 [1,0,1,1,0,0,1,0,1,0,1,0]=>2 [1,0,1,1,0,0,1,0,1,1,0,0]=>3 [1,0,1,1,0,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,0,1,1,0,1,0,0]=>3 [1,0,1,1,0,0,1,1,1,0,0,0]=>4 [1,0,1,1,0,1,0,0,1,0,1,0]=>2 [1,0,1,1,0,1,0,0,1,1,0,0]=>3 [1,0,1,1,0,1,0,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,1,0,1,0,0]=>2 [1,0,1,1,0,1,0,1,1,0,0,0]=>3 [1,0,1,1,0,1,1,0,0,0,1,0]=>3 [1,0,1,1,0,1,1,0,0,1,0,0]=>3 [1,0,1,1,0,1,1,0,1,0,0,0]=>3 [1,0,1,1,0,1,1,1,0,0,0,0]=>4 [1,0,1,1,1,0,0,0,1,0,1,0]=>3 [1,0,1,1,1,0,0,0,1,1,0,0]=>4 [1,0,1,1,1,0,0,1,0,0,1,0]=>3 [1,0,1,1,1,0,0,1,0,1,0,0]=>3 [1,0,1,1,1,0,0,1,1,0,0,0]=>4 [1,0,1,1,1,0,1,0,0,0,1,0]=>3 [1,0,1,1,1,0,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,1,0,0,0]=>3 [1,0,1,1,1,0,1,1,0,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0,1,0]=>4 [1,0,1,1,1,1,0,0,0,1,0,0]=>4 [1,0,1,1,1,1,0,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,1,0,0,0,0]=>4 [1,0,1,1,1,1,1,0,0,0,0,0]=>5 [1,1,0,0,1,0,1,0,1,0,1,0]=>2 [1,1,0,0,1,0,1,0,1,1,0,0]=>3 [1,1,0,0,1,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,0,1,1,1,0,0,0]=>4 [1,1,0,0,1,1,0,0,1,0,1,0]=>3 [1,1,0,0,1,1,0,0,1,1,0,0]=>4 [1,1,0,0,1,1,0,1,0,0,1,0]=>3 [1,1,0,0,1,1,0,1,0,1,0,0]=>3 [1,1,0,0,1,1,0,1,1,0,0,0]=>4 [1,1,0,0,1,1,1,0,0,0,1,0]=>4 [1,1,0,0,1,1,1,0,0,1,0,0]=>4 [1,1,0,0,1,1,1,0,1,0,0,0]=>4 [1,1,0,0,1,1,1,1,0,0,0,0]=>5 [1,1,0,1,0,0,1,0,1,0,1,0]=>2 [1,1,0,1,0,0,1,0,1,1,0,0]=>3 [1,1,0,1,0,0,1,1,0,0,1,0]=>3 [1,1,0,1,0,0,1,1,0,1,0,0]=>3 [1,1,0,1,0,0,1,1,1,0,0,0]=>4 [1,1,0,1,0,1,0,0,1,0,1,0]=>2 [1,1,0,1,0,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,1,0,1,0,0,1,0]=>2 [1,1,0,1,0,1,0,1,0,1,0,0]=>2 [1,1,0,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,0,1,1,0,0,1,0,0]=>3 [1,1,0,1,0,1,1,0,1,0,0,0]=>3 [1,1,0,1,0,1,1,1,0,0,0,0]=>4 [1,1,0,1,1,0,0,0,1,0,1,0]=>3 [1,1,0,1,1,0,0,0,1,1,0,0]=>4 [1,1,0,1,1,0,0,1,0,0,1,0]=>3 [1,1,0,1,1,0,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,1,1,0,0,0]=>4 [1,1,0,1,1,0,1,0,0,0,1,0]=>3 [1,1,0,1,1,0,1,0,0,1,0,0]=>3 [1,1,0,1,1,0,1,0,1,0,0,0]=>3 [1,1,0,1,1,0,1,1,0,0,0,0]=>4 [1,1,0,1,1,1,0,0,0,0,1,0]=>4 [1,1,0,1,1,1,0,0,0,1,0,0]=>4 [1,1,0,1,1,1,0,0,1,0,0,0]=>4 [1,1,0,1,1,1,0,1,0,0,0,0]=>4 [1,1,0,1,1,1,1,0,0,0,0,0]=>5 [1,1,1,0,0,0,1,0,1,0,1,0]=>3 [1,1,1,0,0,0,1,0,1,1,0,0]=>4 [1,1,1,0,0,0,1,1,0,0,1,0]=>4 [1,1,1,0,0,0,1,1,0,1,0,0]=>4 [1,1,1,0,0,0,1,1,1,0,0,0]=>5 [1,1,1,0,0,1,0,0,1,0,1,0]=>3 [1,1,1,0,0,1,0,0,1,1,0,0]=>4 [1,1,1,0,0,1,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,1,1,0,0,0,1,0]=>4 [1,1,1,0,0,1,1,0,0,1,0,0]=>4 [1,1,1,0,0,1,1,0,1,0,0,0]=>4 [1,1,1,0,0,1,1,1,0,0,0,0]=>5 [1,1,1,0,1,0,0,0,1,0,1,0]=>3 [1,1,1,0,1,0,0,0,1,1,0,0]=>4 [1,1,1,0,1,0,0,1,0,0,1,0]=>3 [1,1,1,0,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,1,0,0,0,1,0]=>3 [1,1,1,0,1,0,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,1,0,1,0,0,0]=>3 [1,1,1,0,1,0,1,1,0,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0,1,0]=>4 [1,1,1,0,1,1,0,0,0,1,0,0]=>4 [1,1,1,0,1,1,0,0,1,0,0,0]=>4 [1,1,1,0,1,1,0,1,0,0,0,0]=>4 [1,1,1,0,1,1,1,0,0,0,0,0]=>5 [1,1,1,1,0,0,0,0,1,0,1,0]=>4 [1,1,1,1,0,0,0,0,1,1,0,0]=>5 [1,1,1,1,0,0,0,1,0,0,1,0]=>4 [1,1,1,1,0,0,0,1,0,1,0,0]=>4 [1,1,1,1,0,0,0,1,1,0,0,0]=>5 [1,1,1,1,0,0,1,0,0,0,1,0]=>4 [1,1,1,1,0,0,1,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0,1,0]=>4 [1,1,1,1,0,1,0,0,0,1,0,0]=>4 [1,1,1,1,0,1,0,0,1,0,0,0]=>4 [1,1,1,1,0,1,0,1,0,0,0,0]=>4 [1,1,1,1,0,1,1,0,0,0,0,0]=>5 [1,1,1,1,1,0,0,0,0,0,1,0]=>5 [1,1,1,1,1,0,0,0,0,1,0,0]=>5 [1,1,1,1,1,0,0,0,1,0,0,0]=>5 [1,1,1,1,1,0,0,1,0,0,0,0]=>5 [1,1,1,1,1,0,1,0,0,0,0,0]=>5 [1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of simple modules with grade at least one in the corresponding Nakayama algebra.
Code
DeclareOperation("gradeofmodule",[IsList]);

InstallMethod(gradeofmodule, "for a representation of a quiver", [IsList],0,function(LIST)

local A,M,RegA,g,temmi,UT;

A:=LIST[1];
M:=LIST[2];
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
g:=GorensteinDimensionOfAlgebra(A,30);
temmi:=[];Append(temmi,[Size(HomOverAlgebra(M,RegA))]);
for i in [0..g-1] do Append(temmi,[Size(ExtOverAlgebra(NthSyzygy(M,i),RegA)[2])]);od;
UT:=Filtered([0..g],x->temmi[x+1]>0);
return(Minimum(UT));
end);




DeclareOperation("numbersimpleswithgradeatleastk",[IsList]);

InstallMethod(numbersimpleswithgradeatleastk, "for a representation of a quiver", [IsList],0,function(LIST)

local A,k,simA,WW;

A:=LIST[1];
k:=LIST[2];
simA:=SimpleModules(A);
WW:=Filtered(simA,x->gradeofmodule([A,x])>=k);
return(Size(WW));
end);

Created
May 11, 2018 at 23:40 by Rene Marczinzik
Updated
May 11, 2018 at 23:40 by Rene Marczinzik