Identifier
-
Mp00124:
Dyck paths
—Adin-Bagno-Roichman transformation⟶
Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001192: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => 0
[1,0,1,0] => [1,0,1,0] => [1,1,0,0] => 0
[1,1,0,0] => [1,1,0,0] => [1,0,1,0] => 1
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 1
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 2
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => 1
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => 1
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 2
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 3
[1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 2
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 1
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => 1
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => 3
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 1
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 1
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 4
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 3
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 3
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 3
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 4
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 3
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 1
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
Adin-Bagno-Roichman transformation
Description
The Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!