Identifier
  • Mp00099: Dyck paths bounce pathDyck paths
    St001198: Dyck paths ⟶ ℤ (values match St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.)
Values
[1,0,1,0] => [1,0,1,0] => 2
[1,0,1,0,1,0] => [1,0,1,0,1,0] => 2
[1,0,1,1,0,0] => [1,0,1,1,0,0] => 2
[1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
[1,1,0,1,0,0] => [1,0,1,1,0,0] => 2
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => 2
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => 2
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => 2
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
>>> Load all 190 entries. <<<
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 2
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 2
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 2
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 2
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 2
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 2
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 2
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 2
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 2
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 2
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
search for individual values
searching the database for the individual values of this statistic
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.