Identifier
-
Mp00276:
Graphs
—to edge-partition of biconnected components⟶
Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St001200: Dyck paths ⟶ ℤ
Values
([(0,2),(1,2)],3) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(1,3),(2,3)],4) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,2)],4) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 2
([(2,4),(3,4)],5) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(1,4),(2,3)],5) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => 3
([(3,5),(4,5)],6) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(2,5),(3,4)],6) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
([(4,6),(5,6)],7) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(3,6),(4,5)],7) => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
([(3,6),(4,5),(5,6)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(2,3),(4,6),(5,6)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 2
([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 3
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => 3
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => 3
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 3
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 4
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 3
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => 3
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 3
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => 3
search for individual values
searching the database for the individual values of this statistic
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Map
swap returns and last descent
Description
Return a Dyck path with number of returns and length of the last descent interchanged.
This is the specialisation of the map $\Phi$ in [1] to Dyck paths. It is characterised by the fact that the number of up steps before a down step that is neither a return nor part of the last descent is preserved.
This is the specialisation of the map $\Phi$ in [1] to Dyck paths. It is characterised by the fact that the number of up steps before a down step that is neither a return nor part of the last descent is preserved.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.
The biconnected components are also known as blocks of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!