Identifier
Values
[[]] => [1,0] => [1,1,0,0] => [1,0,1,0] => 2
[[],[]] => [1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 2
[[[]]] => [1,1,0,0] => [1,1,1,0,0,0] => [1,1,0,0,1,0] => 2
[[],[],[]] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => 2
[[],[[]]] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => 3
[[[]],[]] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,0] => 3
[[[],[]]] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0] => 2
[[[[]]]] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0] => 2
[[],[],[],[]] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
[[],[],[[]]] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 3
[[],[[]],[]] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => 3
[[],[[],[]]] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 3
[[],[[[]]]] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => 3
[[[]],[],[]] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[[[]],[[]]] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => 3
[[[],[]],[]] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 3
[[[[]]],[]] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => 3
[[[],[],[]]] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[[[],[[]]]] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => 3
[[[[]],[]]] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 3
[[[[],[]]]] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[[[[[]]]]] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Map
Knuth-Krattenthaler
Description
The map that sends the Dyck path to a 321-avoiding permutation, then applies the Robinson-Schensted correspondence and finally interprets the first row of the insertion tableau and the second row of the recording tableau as up steps.
Interpreting a pair of two-row standard tableaux of the same shape as a Dyck path is explained by Knuth in [1, pp. 60].
Krattenthaler's bijection between Dyck paths and $321$-avoiding permutations used is Mp00119to 321-avoiding permutation (Krattenthaler), see [2].
This is the inverse of the map Mp00127left-to-right-maxima to Dyck path that interprets the left-to-right maxima of the permutation obtained from Mp00024to 321-avoiding permutation as a Dyck path.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to Dyck path
Description
Return the Dyck path of the corresponding ordered tree induced by the recurrence of the Catalan numbers, see wikipedia:Catalan_number.
This sends the maximal height of the Dyck path to the depth of the tree.