Identifier
-
Mp00120:
Dyck paths
—Lalanne-Kreweras involution⟶
Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
St001204: Dyck paths ⟶ ℤ
Values
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => [1,0,1,0] => 1
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => [1,1,0,0] => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 1
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => 0
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 0
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 0
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0] => 0
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => 0
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => 0
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0] => 0
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 0
[1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0] => 1
[1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0] => 0
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => 0
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0] => 1
[1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => 0
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 0
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 0
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0] => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 0
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => 0
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 0
[1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => 0
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => 0
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => 0
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => 0
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 0
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => 1
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => 0
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 0
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 0
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 0
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => 0
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => 0
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => 1
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 0
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 0
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 0
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => 0
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => 0
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 0
>>> Load all 195 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra.
Associate to this special CNakayama algebra a Dyck path as follows:
In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra.
The statistic gives the $(t-1)/2$ when $t$ is the projective dimension of the simple module $S_{n-2}$.
Associate to this special CNakayama algebra a Dyck path as follows:
In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra.
The statistic gives the $(t-1)/2$ when $t$ is the projective dimension of the simple module $S_{n-2}$.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
reverse
Description
The reversal of a Dyck path.
This is the Dyck path obtained by reading the path backwards.
This is the Dyck path obtained by reading the path backwards.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!