Identifier
-
Mp00103:
Dyck paths
—peeling map⟶
Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St001206: Dyck paths ⟶ ℤ (values match St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.)
Values
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 3
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 3
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => 3
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 3
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 3
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 3
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 4
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 3
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 3
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 3
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 3
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 4
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 3
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 3
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 3
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 4
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 3
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => 3
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 3
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => 3
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 3
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 3
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 3
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 3
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 3
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => 2
search for individual values
searching the database for the individual values of this statistic
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
Map
swap returns and last descent
Description
Return a Dyck path with number of returns and length of the last descent interchanged.
This is the specialisation of the map $\Phi$ in [1] to Dyck paths. It is characterised by the fact that the number of up steps before a down step that is neither a return nor part of the last descent is preserved.
This is the specialisation of the map $\Phi$ in [1] to Dyck paths. It is characterised by the fact that the number of up steps before a down step that is neither a return nor part of the last descent is preserved.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!