Identifier
-
Mp00027:
Dyck paths
—to partition⟶
Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St001206: Dyck paths ⟶ ℤ (values match St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.)
Values
[1,0,1,0,1,0] => [2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
[1,0,1,1,0,0] => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
[1,0,1,0,1,0,1,0] => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,0] => [2,2,1] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,0,1,0] => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,0] => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,0] => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,0] => [2,2] => [1,1,1,0,0,0] => [1,0,1,1,0,0] => 2
[1,1,0,1,0,0,1,0] => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,0] => [2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
[1,1,0,1,1,0,0,0] => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
[1,1,1,0,0,0,1,0] => [3] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 2
[1,0,1,0,1,0,1,1,0,0] => [3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0] => [3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,0] => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,0] => [3,2,1,1] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,0] => [2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,0] => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,0,1,0] => [4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 2
[1,1,0,0,1,0,1,1,0,0] => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,1,0,1,0,0] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,1,1,0,0,0] => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,0,1,0,1,0] => [4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,0,1,1,0,0] => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,0,1,0] => [4,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,1,0,0] => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,1,1,0,0,0] => [2,2,1] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => 2
[1,1,0,1,1,0,0,0,1,0] => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 3
[1,1,0,1,1,0,0,1,0,0] => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[1,1,0,1,1,0,1,0,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,0,1,0] => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
[1,1,1,0,0,0,1,1,0,0] => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0] => 2
[1,1,1,0,0,1,0,0,1,0] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,0,1,0,0] => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,1,0,0,0] => [2,2] => [1,1,1,0,0,0] => [1,0,1,1,0,0] => 2
[1,1,1,0,1,0,0,0,1,0] => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 3
[1,1,1,0,1,0,0,1,0,0] => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,1,0,0,0] => [2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
[1,1,1,1,0,0,0,0,1,0] => [4] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,1,0,0] => [3] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [2,2,2,1,1] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [2,2,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 2
[1,0,1,1,1,1,0,1,0,0,0,0] => [2,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,1,1,0,0,0] => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 2
[1,1,0,0,1,1,0,1,1,0,0,0] => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => 3
[1,1,0,0,1,1,1,0,1,0,0,0] => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => 2
[1,1,0,0,1,1,1,1,0,0,0,0] => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => 2
[1,1,0,1,0,0,1,1,1,0,0,0] => [3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 2
[1,1,0,1,0,1,0,1,1,0,0,0] => [3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => 2
[1,1,0,1,0,1,1,0,1,0,0,0] => [3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,1,1,0,0,1,1,0,0,0] => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => 2
[1,1,0,1,1,0,1,0,1,0,0,0] => [3,2,1,1] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => [2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 2
[1,1,0,1,1,1,0,0,1,0,0,0] => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => [2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => 2
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,0,1,1,0,0] => [4,4,3] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 2
[1,1,1,0,0,0,1,1,0,1,0,0] => [4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,0,0,0,1,1,1,0,0,0] => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,0,0,1,0,0,1,1,0,0] => [4,4,2] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 3
[1,1,1,0,0,1,0,1,0,1,0,0] => [4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 2
[1,1,1,0,0,1,0,1,1,0,0,0] => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 2
[1,1,1,0,0,1,1,0,0,1,0,0] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,1,1,0,1,0,0,0] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,1,1,1,0,0,0,0] => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0] => 2
[1,1,1,0,1,0,0,0,1,1,0,0] => [4,4,1] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => 3
[1,1,1,0,1,0,0,1,0,1,0,0] => [4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,1,1,0,0,0] => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,1,0,0,1,0,0] => [4,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => 2
[1,1,1,0,1,0,1,0,1,0,0,0] => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => [2,2,1] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => 2
[1,1,1,0,1,1,0,0,0,1,0,0] => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 3
[1,1,1,0,1,1,0,0,1,0,0,0] => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[1,1,1,0,1,1,0,1,0,0,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0] => 2
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
[1,1,1,1,0,0,0,0,1,0,1,0] => [5,4] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,0,1,1,0,0] => [4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,1,0,0,1,0] => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => 2
[1,1,1,1,0,0,0,1,0,1,0,0] => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
[1,1,1,1,0,0,0,1,1,0,0,0] => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0] => 2
[1,1,1,1,0,0,1,0,0,0,1,0] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 3
[1,1,1,1,0,0,1,0,0,1,0,0] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,1,0,1,0,0,0] => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,1,1,0,0,0,0] => [2,2] => [1,1,1,0,0,0] => [1,0,1,1,0,0] => 2
[1,1,1,1,0,1,0,0,0,0,1,0] => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 3
[1,1,1,1,0,1,0,0,0,1,0,0] => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 3
[1,1,1,1,0,1,0,0,1,0,0,0] => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 2
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,1] => [1,1,0,0] => [1,0,1,0] => 2
[1,1,1,1,1,0,0,0,0,0,1,0] => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 3
[1,1,1,1,1,0,0,0,0,1,0,0] => [4] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
>>> Load all 325 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA.
Map
promotion
Description
The promotion of the two-row standard Young tableau of a Dyck path.
Dyck paths of semilength n are in bijection with standard Young tableaux of shape (n2), see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
Dyck paths of semilength n are in bijection with standard Young tableaux of shape (n2), see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
to partition
Description
The cut-out partition of a Dyck path.
The partition λ associated to a Dyck path is defined to be the complementary partition inside the staircase partition (n−1,…,2,1) when cutting out D considered as a path from (0,0) to (n,n).
In other words, λi is the number of down-steps before the (n+1−i)-th up-step of D.
This map is a bijection between Dyck paths of size n and partitions inside the staircase partition (n−1,…,2,1).
The partition λ associated to a Dyck path is defined to be the complementary partition inside the staircase partition (n−1,…,2,1) when cutting out D considered as a path from (0,0) to (n,n).
In other words, λi is the number of down-steps before the (n+1−i)-th up-step of D.
This map is a bijection between Dyck paths of size n and partitions inside the staircase partition (n−1,…,2,1).
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!