Identifier
Values
[1,0,1,0] => [1,1,0,0] => [[0,1],[1,0]] => [2,1] => 1
[1,1,0,0] => [1,0,1,0] => [[1,0],[0,1]] => [1,2] => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [[0,0,1],[0,1,0],[1,0,0]] => [3,2,1] => 2
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => [2,1,3] => 1
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => [1,3,2] => 1
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => [1,3,2] => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => [1,2,3] => 0
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [4,3,2,1] => 3
[1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [3,2,1,4] => 2
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [2,1,4,3] => 1
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => [2,1,4,3] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => [1,4,3,2] => 2
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => [1,4,3,2] => 2
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => [1,4,3,2] => 2
[1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [1,3,2,4] => 1
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [1,2,4,3] => 1
[1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [1,2,3,4] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Map
to left key permutation
Description
Return the permutation of the left key of an alternating sign matrix.
This was originally defined by Lascoux and then further studied by Aval [1].
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.