Identifier
- St001208: Permutations ⟶ ℤ
Values
=>
[1]=>1
[1,2]=>1
[2,1]=>1
[1,2,3]=>1
[1,3,2]=>1
[2,1,3]=>1
[2,3,1]=>1
[3,1,2]=>1
[3,2,1]=>1
[1,2,3,4]=>1
[1,2,4,3]=>1
[1,3,2,4]=>1
[1,3,4,2]=>1
[1,4,2,3]=>1
[1,4,3,2]=>1
[2,1,3,4]=>1
[2,1,4,3]=>2
[2,3,1,4]=>1
[2,3,4,1]=>1
[2,4,1,3]=>1
[2,4,3,1]=>1
[3,1,2,4]=>1
[3,1,4,2]=>1
[3,2,1,4]=>1
[3,2,4,1]=>1
[3,4,1,2]=>1
[3,4,2,1]=>1
[4,1,2,3]=>1
[4,1,3,2]=>1
[4,2,1,3]=>1
[4,2,3,1]=>1
[4,3,1,2]=>1
[4,3,2,1]=>1
[1,2,3,4,5]=>1
[1,2,3,5,4]=>1
[1,2,4,3,5]=>1
[1,2,4,5,3]=>1
[1,2,5,3,4]=>1
[1,2,5,4,3]=>1
[1,3,2,4,5]=>1
[1,3,2,5,4]=>2
[1,3,4,2,5]=>1
[1,3,4,5,2]=>1
[1,3,5,2,4]=>1
[1,3,5,4,2]=>1
[1,4,2,3,5]=>1
[1,4,2,5,3]=>1
[1,4,3,2,5]=>1
[1,4,3,5,2]=>1
[1,4,5,2,3]=>1
[1,4,5,3,2]=>1
[1,5,2,3,4]=>1
[1,5,2,4,3]=>1
[1,5,3,2,4]=>1
[1,5,3,4,2]=>1
[1,5,4,2,3]=>1
[1,5,4,3,2]=>1
[2,1,3,4,5]=>1
[2,1,3,5,4]=>2
[2,1,4,3,5]=>2
[2,1,4,5,3]=>2
[2,1,5,3,4]=>2
[2,1,5,4,3]=>2
[2,3,1,4,5]=>1
[2,3,1,5,4]=>2
[2,3,4,1,5]=>1
[2,3,4,5,1]=>1
[2,3,5,1,4]=>1
[2,3,5,4,1]=>1
[2,4,1,3,5]=>1
[2,4,1,5,3]=>1
[2,4,3,1,5]=>1
[2,4,3,5,1]=>1
[2,4,5,1,3]=>1
[2,4,5,3,1]=>1
[2,5,1,3,4]=>1
[2,5,1,4,3]=>1
[2,5,3,1,4]=>1
[2,5,3,4,1]=>1
[2,5,4,1,3]=>1
[2,5,4,3,1]=>1
[3,1,2,4,5]=>1
[3,1,2,5,4]=>2
[3,1,4,2,5]=>1
[3,1,4,5,2]=>1
[3,1,5,2,4]=>1
[3,1,5,4,2]=>1
[3,2,1,4,5]=>1
[3,2,1,5,4]=>2
[3,2,4,1,5]=>1
[3,2,4,5,1]=>1
[3,2,5,1,4]=>1
[3,2,5,4,1]=>1
[3,4,1,2,5]=>1
[3,4,1,5,2]=>1
[3,4,2,1,5]=>1
[3,4,2,5,1]=>1
[3,4,5,1,2]=>1
[3,4,5,2,1]=>1
[3,5,1,2,4]=>1
[3,5,1,4,2]=>1
[3,5,2,1,4]=>1
[3,5,2,4,1]=>1
[3,5,4,1,2]=>1
[3,5,4,2,1]=>1
[4,1,2,3,5]=>1
[4,1,2,5,3]=>1
[4,1,3,2,5]=>1
[4,1,3,5,2]=>1
[4,1,5,2,3]=>1
[4,1,5,3,2]=>1
[4,2,1,3,5]=>1
[4,2,1,5,3]=>1
[4,2,3,1,5]=>1
[4,2,3,5,1]=>1
[4,2,5,1,3]=>1
[4,2,5,3,1]=>1
[4,3,1,2,5]=>1
[4,3,1,5,2]=>1
[4,3,2,1,5]=>1
[4,3,2,5,1]=>1
[4,3,5,1,2]=>1
[4,3,5,2,1]=>1
[4,5,1,2,3]=>1
[4,5,1,3,2]=>1
[4,5,2,1,3]=>1
[4,5,2,3,1]=>1
[4,5,3,1,2]=>1
[4,5,3,2,1]=>1
[5,1,2,3,4]=>1
[5,1,2,4,3]=>1
[5,1,3,2,4]=>1
[5,1,3,4,2]=>1
[5,1,4,2,3]=>1
[5,1,4,3,2]=>1
[5,2,1,3,4]=>1
[5,2,1,4,3]=>1
[5,2,3,1,4]=>1
[5,2,3,4,1]=>1
[5,2,4,1,3]=>1
[5,2,4,3,1]=>1
[5,3,1,2,4]=>1
[5,3,1,4,2]=>1
[5,3,2,1,4]=>1
[5,3,2,4,1]=>1
[5,3,4,1,2]=>1
[5,3,4,2,1]=>1
[5,4,1,2,3]=>1
[5,4,1,3,2]=>1
[5,4,2,1,3]=>1
[5,4,2,3,1]=>1
[5,4,3,1,2]=>1
[5,4,3,2,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$.
References
[1] Iyama, O., Zhang, X. Classifying τ-tilting modules over the Auslander algebra of $K[x]/(x^n)$ arXiv:1602.05037
Created
May 24, 2018 at 20:09 by Rene Marczinzik
Updated
May 24, 2018 at 20:09 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!