Identifier
-
Mp00023:
Dyck paths
—to non-crossing permutation⟶
Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001215: Dyck paths ⟶ ℤ
Values
[1,0] => [1] => [1,0] => [1,0] => 0
[1,0,1,0] => [1,2] => [1,0,1,0] => [1,1,0,0] => 0
[1,1,0,0] => [2,1] => [1,1,0,0] => [1,0,1,0] => 1
[1,0,1,0,1,0] => [1,2,3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
[1,0,1,1,0,0] => [1,3,2] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
[1,1,0,0,1,0] => [2,1,3] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 1
[1,1,0,1,0,0] => [2,3,1] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => 2
[1,1,1,0,0,0] => [3,2,1] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,0] => [1,2,4,3] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 1
[1,0,1,1,0,0,1,0] => [1,3,2,4] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,0] => [1,3,4,2] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,0,0] => [1,4,3,2] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
[1,1,0,0,1,0,1,0] => [2,1,3,4] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => 1
[1,1,0,0,1,1,0,0] => [2,1,4,3] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,0,1,0] => [2,3,1,4] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
[1,1,0,1,0,1,0,0] => [2,3,4,1] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 3
[1,1,0,1,1,0,0,0] => [2,4,3,1] => [1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => 2
[1,1,1,0,0,0,1,0] => [3,2,1,4] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 1
[1,1,1,0,0,1,0,0] => [3,2,4,1] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => 2
[1,1,1,0,1,0,0,0] => [4,2,3,1] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 1
[1,1,1,1,0,0,0,0] => [4,3,2,1] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[1,0,1,1,0,1,1,0,0,0] => [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,1,0,0] => [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
[1,1,0,0,1,0,1,0,1,0] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,0,1,1,0,0] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 2
[1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,1,0,0] => [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 3
[1,1,0,0,1,1,1,0,0,0] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 2
[1,1,0,1,0,0,1,0,1,0] => [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[1,1,0,1,0,0,1,1,0,0] => [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 3
[1,1,0,1,0,1,0,0,1,0] => [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 3
[1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 4
[1,1,0,1,0,1,1,0,0,0] => [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 3
[1,1,0,1,1,0,0,0,1,0] => [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 2
[1,1,0,1,1,0,0,1,0,0] => [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 3
[1,1,0,1,1,0,1,0,0,0] => [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[1,1,0,1,1,1,0,0,0,0] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,0,1,0] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => 1
[1,1,1,0,0,0,1,1,0,0] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,1,1,0,0,1,0,0,1,0] => [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => 2
[1,1,1,0,0,1,0,1,0,0] => [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 3
[1,1,1,0,0,1,1,0,0,0] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,1,0,1,0,0,0,1,0] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 1
[1,1,1,0,1,0,0,1,0,0] => [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => 2
[1,1,1,0,1,0,1,0,0,0] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 1
[1,1,1,1,0,0,0,0,1,0] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 1
[1,1,1,1,0,0,0,1,0,0] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => 2
[1,1,1,1,0,0,1,0,0,0] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 1
[1,1,1,1,0,1,0,0,0,0] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 1
[1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 1
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,2,4,5,6,3] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,2,4,6,5,3] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 1
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,2,5,4,6,3] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,2,6,4,5,3] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,6,5,4,3] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,3,2,5,6,4] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 3
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,6,5,4] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,3,4,2,6,5] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => 3
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 3
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,3,4,5,6,2] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,3,4,6,5,2] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,4,2,6] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,3,5,4,6,2] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => 3
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,3,6,4,5,2] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,3,6,5,4,2] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 1
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,4,3,2,6,5] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,3,5,2,6] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,4,3,5,6,2] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => 3
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,4,3,6,5,2] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,5,3,4,2,6] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,5,3,4,6,2] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,6,3,4,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,6,3,5,4,2] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 1
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. Then the statistic gives the vector space dimension of the second Ext-group between X and the regular module.
For the first 196 values, the statistic also gives the number of indecomposable non-projective modules $X$ such that $\tau(X)$ has codominant dimension equal to one and projective dimension equal to one.
For the first 196 values, the statistic also gives the number of indecomposable non-projective modules $X$ such that $\tau(X)$ has codominant dimension equal to one and projective dimension equal to one.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
Map
left-to-right-maxima to Dyck path
Description
The left-to-right maxima of a permutation as a Dyck path.
Let $(c_1, \dots, c_k)$ be the rise composition Mp00102rise composition of the path. Then the corresponding left-to-right maxima are $c_1, c_1+c_2, \dots, c_1+\dots+c_k$.
Restricted to 321-avoiding permutations, this is the inverse of Mp00119to 321-avoiding permutation (Krattenthaler), restricted to 312-avoiding permutations, this is the inverse of Mp00031to 312-avoiding permutation.
Let $(c_1, \dots, c_k)$ be the rise composition Mp00102rise composition of the path. Then the corresponding left-to-right maxima are $c_1, c_1+c_2, \dots, c_1+\dots+c_k$.
Restricted to 321-avoiding permutations, this is the inverse of Mp00119to 321-avoiding permutation (Krattenthaler), restricted to 312-avoiding permutations, this is the inverse of Mp00031to 312-avoiding permutation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!