Identifier
-
Mp00120:
Dyck paths
—Lalanne-Kreweras involution⟶
Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001217: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => [1,0] => 1
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => [1,1,0,0] => 1
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => [1,0,1,0] => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 1
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 0
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => 0
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => 0
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 0
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => 0
[1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
[1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => 0
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 1
[1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 0
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 0
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 0
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 0
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => 0
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => 0
[1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 0
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 0
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 0
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 0
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 0
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 0
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 0
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 0
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 0
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 0
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 0
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 0
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 0
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => 0
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 0
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => 0
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!