Identifier
- St001218: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>3
[1,0,1,0]=>4
[1,1,0,0]=>4
[1,0,1,0,1,0]=>5
[1,0,1,1,0,0]=>5
[1,1,0,0,1,0]=>5
[1,1,0,1,0,0]=>6
[1,1,1,0,0,0]=>5
[1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,0]=>6
[1,0,1,1,0,1,0,0]=>8
[1,0,1,1,1,0,0,0]=>6
[1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,0]=>8
[1,1,0,1,0,1,0,0]=>8
[1,1,0,1,1,0,0,0]=>8
[1,1,1,0,0,0,1,0]=>6
[1,1,1,0,0,1,0,0]=>8
[1,1,1,0,1,0,0,0]=>8
[1,1,1,1,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0]=>7
[1,0,1,0,1,0,1,1,0,0]=>7
[1,0,1,0,1,1,0,0,1,0]=>7
[1,0,1,0,1,1,0,1,0,0]=>10
[1,0,1,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0]=>7
[1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,0,1,0]=>12
[1,0,1,1,0,1,0,1,0,0]=>10
[1,0,1,1,0,1,1,0,0,0]=>12
[1,0,1,1,1,0,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,0]=>10
[1,0,1,1,1,0,1,0,0,0]=>12
[1,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0]=>7
[1,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,1,0,1,0,0]=>10
[1,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0]=>10
[1,1,0,1,0,0,1,1,0,0]=>10
[1,1,0,1,0,1,0,0,1,0]=>10
[1,1,0,1,0,1,0,1,0,0]=>12
[1,1,0,1,0,1,1,0,0,0]=>10
[1,1,0,1,1,0,0,0,1,0]=>10
[1,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,0,0]=>12
[1,1,0,1,1,1,0,0,0,0]=>10
[1,1,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,0,1,0]=>12
[1,1,1,0,0,1,0,1,0,0]=>10
[1,1,1,0,0,1,1,0,0,0]=>12
[1,1,1,0,1,0,0,0,1,0]=>12
[1,1,1,0,1,0,0,1,0,0]=>12
[1,1,1,0,1,0,1,0,0,0]=>12
[1,1,1,0,1,1,0,0,0,0]=>12
[1,1,1,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,0]=>10
[1,1,1,1,0,0,1,0,0,0]=>12
[1,1,1,1,0,1,0,0,0,0]=>10
[1,1,1,1,1,0,0,0,0,0]=>7
[1,0,1,0,1,0,1,0,1,0,1,0]=>8
[1,0,1,0,1,0,1,0,1,1,0,0]=>8
[1,0,1,0,1,0,1,1,0,0,1,0]=>8
[1,0,1,0,1,0,1,1,0,1,0,0]=>12
[1,0,1,0,1,0,1,1,1,0,0,0]=>8
[1,0,1,0,1,1,0,0,1,0,1,0]=>8
[1,0,1,0,1,1,0,0,1,1,0,0]=>8
[1,0,1,0,1,1,0,1,0,0,1,0]=>18
[1,0,1,0,1,1,0,1,0,1,0,0]=>12
[1,0,1,0,1,1,0,1,1,0,0,0]=>18
[1,0,1,0,1,1,1,0,0,0,1,0]=>8
[1,0,1,0,1,1,1,0,0,1,0,0]=>12
[1,0,1,0,1,1,1,0,1,0,0,0]=>18
[1,0,1,0,1,1,1,1,0,0,0,0]=>8
[1,0,1,1,0,0,1,0,1,0,1,0]=>8
[1,0,1,1,0,0,1,0,1,1,0,0]=>8
[1,0,1,1,0,0,1,1,0,0,1,0]=>8
[1,0,1,1,0,0,1,1,0,1,0,0]=>12
[1,0,1,1,0,0,1,1,1,0,0,0]=>8
[1,0,1,1,0,1,0,0,1,0,1,0]=>18
[1,0,1,1,0,1,0,0,1,1,0,0]=>18
[1,0,1,1,0,1,0,1,0,0,1,0]=>12
[1,0,1,1,0,1,0,1,0,1,0,0]=>18
[1,0,1,1,0,1,0,1,1,0,0,0]=>12
[1,0,1,1,0,1,1,0,0,0,1,0]=>18
[1,0,1,1,0,1,1,0,0,1,0,0]=>0
[1,0,1,1,0,1,1,0,1,0,0,0]=>18
[1,0,1,1,0,1,1,1,0,0,0,0]=>18
[1,0,1,1,1,0,0,0,1,0,1,0]=>8
[1,0,1,1,1,0,0,0,1,1,0,0]=>8
[1,0,1,1,1,0,0,1,0,0,1,0]=>18
[1,0,1,1,1,0,0,1,0,1,0,0]=>12
[1,0,1,1,1,0,0,1,1,0,0,0]=>18
[1,0,1,1,1,0,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,1,0,0,1,0,0]=>18
[1,0,1,1,1,0,1,0,1,0,0,0]=>18
[1,0,1,1,1,0,1,1,0,0,0,0]=>0
[1,0,1,1,1,1,0,0,0,0,1,0]=>8
[1,0,1,1,1,1,0,0,0,1,0,0]=>12
[1,0,1,1,1,1,0,0,1,0,0,0]=>18
[1,0,1,1,1,1,0,1,0,0,0,0]=>18
[1,0,1,1,1,1,1,0,0,0,0,0]=>8
[1,1,0,0,1,0,1,0,1,0,1,0]=>8
[1,1,0,0,1,0,1,0,1,1,0,0]=>8
[1,1,0,0,1,0,1,1,0,0,1,0]=>8
[1,1,0,0,1,0,1,1,0,1,0,0]=>12
[1,1,0,0,1,0,1,1,1,0,0,0]=>8
[1,1,0,0,1,1,0,0,1,0,1,0]=>8
[1,1,0,0,1,1,0,0,1,1,0,0]=>8
[1,1,0,0,1,1,0,1,0,0,1,0]=>18
[1,1,0,0,1,1,0,1,0,1,0,0]=>12
[1,1,0,0,1,1,0,1,1,0,0,0]=>18
[1,1,0,0,1,1,1,0,0,0,1,0]=>8
[1,1,0,0,1,1,1,0,0,1,0,0]=>12
[1,1,0,0,1,1,1,0,1,0,0,0]=>18
[1,1,0,0,1,1,1,1,0,0,0,0]=>8
[1,1,0,1,0,0,1,0,1,0,1,0]=>12
[1,1,0,1,0,0,1,0,1,1,0,0]=>12
[1,1,0,1,0,0,1,1,0,0,1,0]=>12
[1,1,0,1,0,0,1,1,0,1,0,0]=>0
[1,1,0,1,0,0,1,1,1,0,0,0]=>12
[1,1,0,1,0,1,0,0,1,0,1,0]=>12
[1,1,0,1,0,1,0,0,1,1,0,0]=>12
[1,1,0,1,0,1,0,1,0,0,1,0]=>18
[1,1,0,1,0,1,0,1,0,1,0,0]=>18
[1,1,0,1,0,1,0,1,1,0,0,0]=>18
[1,1,0,1,0,1,1,0,0,0,1,0]=>12
[1,1,0,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,1,0,0,0]=>18
[1,1,0,1,0,1,1,1,0,0,0,0]=>12
[1,1,0,1,1,0,0,0,1,0,1,0]=>12
[1,1,0,1,1,0,0,0,1,1,0,0]=>12
[1,1,0,1,1,0,0,1,0,0,1,0]=>0
[1,1,0,1,1,0,0,1,0,1,0,0]=>0
[1,1,0,1,1,0,0,1,1,0,0,0]=>0
[1,1,0,1,1,0,1,0,0,0,1,0]=>18
[1,1,0,1,1,0,1,0,0,1,0,0]=>18
[1,1,0,1,1,0,1,0,1,0,0,0]=>0
[1,1,0,1,1,0,1,1,0,0,0,0]=>18
[1,1,0,1,1,1,0,0,0,0,1,0]=>12
[1,1,0,1,1,1,0,0,0,1,0,0]=>0
[1,1,0,1,1,1,0,0,1,0,0,0]=>0
[1,1,0,1,1,1,0,1,0,0,0,0]=>18
[1,1,0,1,1,1,1,0,0,0,0,0]=>12
[1,1,1,0,0,0,1,0,1,0,1,0]=>8
[1,1,1,0,0,0,1,0,1,1,0,0]=>8
[1,1,1,0,0,0,1,1,0,0,1,0]=>8
[1,1,1,0,0,0,1,1,0,1,0,0]=>12
[1,1,1,0,0,0,1,1,1,0,0,0]=>8
[1,1,1,0,0,1,0,0,1,0,1,0]=>18
[1,1,1,0,0,1,0,0,1,1,0,0]=>18
[1,1,1,0,0,1,0,1,0,0,1,0]=>12
[1,1,1,0,0,1,0,1,0,1,0,0]=>18
[1,1,1,0,0,1,0,1,1,0,0,0]=>12
[1,1,1,0,0,1,1,0,0,0,1,0]=>18
[1,1,1,0,0,1,1,0,0,1,0,0]=>0
[1,1,1,0,0,1,1,0,1,0,0,0]=>18
[1,1,1,0,0,1,1,1,0,0,0,0]=>18
[1,1,1,0,1,0,0,0,1,0,1,0]=>18
[1,1,1,0,1,0,0,0,1,1,0,0]=>18
[1,1,1,0,1,0,0,1,0,0,1,0]=>18
[1,1,1,0,1,0,0,1,0,1,0,0]=>18
[1,1,1,0,1,0,0,1,1,0,0,0]=>18
[1,1,1,0,1,0,1,0,0,0,1,0]=>18
[1,1,1,0,1,0,1,0,0,1,0,0]=>0
[1,1,1,0,1,0,1,0,1,0,0,0]=>18
[1,1,1,0,1,0,1,1,0,0,0,0]=>18
[1,1,1,0,1,1,0,0,0,0,1,0]=>18
[1,1,1,0,1,1,0,0,0,1,0,0]=>0
[1,1,1,0,1,1,0,0,1,0,0,0]=>0
[1,1,1,0,1,1,0,1,0,0,0,0]=>18
[1,1,1,0,1,1,1,0,0,0,0,0]=>18
[1,1,1,1,0,0,0,0,1,0,1,0]=>8
[1,1,1,1,0,0,0,0,1,1,0,0]=>8
[1,1,1,1,0,0,0,1,0,0,1,0]=>18
[1,1,1,1,0,0,0,1,0,1,0,0]=>12
[1,1,1,1,0,0,0,1,1,0,0,0]=>18
[1,1,1,1,0,0,1,0,0,0,1,0]=>0
[1,1,1,1,0,0,1,0,0,1,0,0]=>18
[1,1,1,1,0,0,1,0,1,0,0,0]=>18
[1,1,1,1,0,0,1,1,0,0,0,0]=>0
[1,1,1,1,0,1,0,0,0,0,1,0]=>18
[1,1,1,1,0,1,0,0,0,1,0,0]=>18
[1,1,1,1,0,1,0,0,1,0,0,0]=>18
[1,1,1,1,0,1,0,1,0,0,0,0]=>18
[1,1,1,1,0,1,1,0,0,0,0,0]=>18
[1,1,1,1,1,0,0,0,0,0,1,0]=>8
[1,1,1,1,1,0,0,0,0,1,0,0]=>12
[1,1,1,1,1,0,0,0,1,0,0,0]=>18
[1,1,1,1,1,0,0,1,0,0,0,0]=>18
[1,1,1,1,1,0,1,0,0,0,0,0]=>12
[1,1,1,1,1,1,0,0,0,0,0,0]=>8
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1.
It returns zero in case there is no such k.
It returns zero in case there is no such k.
Created
Jun 23, 2018 at 15:11 by Rene Marczinzik
Updated
Jun 24, 2018 at 00:02 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!