edit this statistic or download as text // json
Identifier
Values
[1,0] => 0
[1,0,1,0] => 0
[1,1,0,0] => 0
[1,0,1,0,1,0] => 0
[1,0,1,1,0,0] => 0
[1,1,0,0,1,0] => 0
[1,1,0,1,0,0] => 1
[1,1,1,0,0,0] => 0
[1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0] => 0
[1,0,1,1,0,0,1,0] => 0
[1,0,1,1,0,1,0,0] => 0
[1,0,1,1,1,0,0,0] => 0
[1,1,0,0,1,0,1,0] => 0
[1,1,0,0,1,1,0,0] => 0
[1,1,0,1,0,0,1,0] => 1
[1,1,0,1,0,1,0,0] => 1
[1,1,0,1,1,0,0,0] => 1
[1,1,1,0,0,0,1,0] => 0
[1,1,1,0,0,1,0,0] => 1
[1,1,1,0,1,0,0,0] => 0
[1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,1,0,0] => 0
[1,0,1,0,1,1,0,0,1,0] => 0
[1,0,1,0,1,1,0,1,0,0] => 0
[1,0,1,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,0] => 0
[1,0,1,1,0,0,1,1,0,0] => 0
[1,0,1,1,0,1,0,0,1,0] => 0
[1,0,1,1,0,1,0,1,0,0] => 0
[1,0,1,1,0,1,1,0,0,0] => 0
[1,0,1,1,1,0,0,0,1,0] => 0
[1,0,1,1,1,0,0,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,0] => 1
[1,0,1,1,1,1,0,0,0,0] => 0
[1,1,0,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,1,0,0] => 0
[1,1,0,0,1,1,0,0,1,0] => 0
[1,1,0,0,1,1,0,1,0,0] => 0
[1,1,0,0,1,1,1,0,0,0] => 0
[1,1,0,1,0,0,1,0,1,0] => 1
[1,1,0,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,1,0,0,1,0] => 1
[1,1,0,1,0,1,0,1,0,0] => 1
[1,1,0,1,0,1,1,0,0,0] => 1
[1,1,0,1,1,0,0,0,1,0] => 1
[1,1,0,1,1,0,0,1,0,0] => 1
[1,1,0,1,1,0,1,0,0,0] => 1
[1,1,0,1,1,1,0,0,0,0] => 1
[1,1,1,0,0,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,1,0,0] => 0
[1,1,1,0,0,1,0,0,1,0] => 1
[1,1,1,0,0,1,0,1,0,0] => 1
[1,1,1,0,0,1,1,0,0,0] => 1
[1,1,1,0,1,0,0,0,1,0] => 0
[1,1,1,0,1,0,0,1,0,0] => 0
[1,1,1,0,1,0,1,0,0,0] => 0
[1,1,1,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,0,0,0,1,0] => 0
[1,1,1,1,0,0,0,1,0,0] => 1
[1,1,1,1,0,0,1,0,0,0] => 0
[1,1,1,1,0,1,0,0,0,0] => 0
[1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => 0
[1,0,1,0,1,0,1,1,1,0,0,0] => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => 0
[1,0,1,0,1,1,0,1,0,0,1,0] => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => 0
[1,0,1,0,1,1,0,1,1,0,0,0] => 0
[1,0,1,0,1,1,1,0,0,0,1,0] => 0
[1,0,1,0,1,1,1,0,0,1,0,0] => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => 0
[1,0,1,1,0,0,1,1,0,0,1,0] => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => 0
[1,0,1,1,0,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => 0
[1,0,1,1,0,1,0,1,0,1,0,0] => 0
[1,0,1,1,0,1,0,1,1,0,0,0] => 0
[1,0,1,1,0,1,1,0,0,0,1,0] => 0
[1,0,1,1,0,1,1,0,0,1,0,0] => 0
[1,0,1,1,0,1,1,0,1,0,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => 0
[1,0,1,1,1,0,0,0,1,0,1,0] => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => 0
[1,0,1,1,1,0,0,1,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,1,0,0,1,0,0] => 1
[1,0,1,1,1,0,1,0,1,0,0,0] => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => 1
>>> Load all 196 entries. <<<
[1,0,1,1,1,1,0,0,0,0,1,0] => 0
[1,0,1,1,1,1,0,0,0,1,0,0] => 1
[1,0,1,1,1,1,0,0,1,0,0,0] => 0
[1,0,1,1,1,1,0,1,0,0,0,0] => 0
[1,0,1,1,1,1,1,0,0,0,0,0] => 0
[1,1,0,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,0,1,1,0,0] => 0
[1,1,0,0,1,0,1,1,0,0,1,0] => 0
[1,1,0,0,1,0,1,1,0,1,0,0] => 0
[1,1,0,0,1,0,1,1,1,0,0,0] => 0
[1,1,0,0,1,1,0,0,1,0,1,0] => 0
[1,1,0,0,1,1,0,0,1,1,0,0] => 0
[1,1,0,0,1,1,0,1,0,0,1,0] => 0
[1,1,0,0,1,1,0,1,0,1,0,0] => 0
[1,1,0,0,1,1,0,1,1,0,0,0] => 0
[1,1,0,0,1,1,1,0,0,0,1,0] => 0
[1,1,0,0,1,1,1,0,0,1,0,0] => 1
[1,1,0,0,1,1,1,0,1,0,0,0] => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => 0
[1,1,0,1,0,0,1,0,1,0,1,0] => 1
[1,1,0,1,0,0,1,0,1,1,0,0] => 1
[1,1,0,1,0,0,1,1,0,0,1,0] => 1
[1,1,0,1,0,0,1,1,0,1,0,0] => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => 1
[1,1,0,1,0,1,0,0,1,0,1,0] => 1
[1,1,0,1,0,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,1,0,1,0,0,1,0] => 1
[1,1,0,1,0,1,0,1,0,1,0,0] => 1
[1,1,0,1,0,1,0,1,1,0,0,0] => 1
[1,1,0,1,0,1,1,0,0,0,1,0] => 1
[1,1,0,1,0,1,1,0,0,1,0,0] => 1
[1,1,0,1,0,1,1,0,1,0,0,0] => 1
[1,1,0,1,0,1,1,1,0,0,0,0] => 1
[1,1,0,1,1,0,0,0,1,0,1,0] => 1
[1,1,0,1,1,0,0,0,1,1,0,0] => 1
[1,1,0,1,1,0,0,1,0,0,1,0] => 1
[1,1,0,1,1,0,0,1,0,1,0,0] => 1
[1,1,0,1,1,0,0,1,1,0,0,0] => 1
[1,1,0,1,1,0,1,0,0,0,1,0] => 1
[1,1,0,1,1,0,1,0,0,1,0,0] => 1
[1,1,0,1,1,0,1,0,1,0,0,0] => 1
[1,1,0,1,1,0,1,1,0,0,0,0] => 1
[1,1,0,1,1,1,0,0,0,0,1,0] => 1
[1,1,0,1,1,1,0,0,0,1,0,0] => 2
[1,1,0,1,1,1,0,0,1,0,0,0] => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => 2
[1,1,0,1,1,1,1,0,0,0,0,0] => 1
[1,1,1,0,0,0,1,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,0,1,1,0,0] => 0
[1,1,1,0,0,0,1,1,0,0,1,0] => 0
[1,1,1,0,0,0,1,1,0,1,0,0] => 0
[1,1,1,0,0,0,1,1,1,0,0,0] => 0
[1,1,1,0,0,1,0,0,1,0,1,0] => 1
[1,1,1,0,0,1,0,0,1,1,0,0] => 1
[1,1,1,0,0,1,0,1,0,0,1,0] => 1
[1,1,1,0,0,1,0,1,0,1,0,0] => 1
[1,1,1,0,0,1,0,1,1,0,0,0] => 1
[1,1,1,0,0,1,1,0,0,0,1,0] => 1
[1,1,1,0,0,1,1,0,0,1,0,0] => 1
[1,1,1,0,0,1,1,0,1,0,0,0] => 1
[1,1,1,0,0,1,1,1,0,0,0,0] => 1
[1,1,1,0,1,0,0,0,1,0,1,0] => 0
[1,1,1,0,1,0,0,0,1,1,0,0] => 0
[1,1,1,0,1,0,0,1,0,0,1,0] => 0
[1,1,1,0,1,0,0,1,0,1,0,0] => 0
[1,1,1,0,1,0,0,1,1,0,0,0] => 0
[1,1,1,0,1,0,1,0,0,0,1,0] => 0
[1,1,1,0,1,0,1,0,0,1,0,0] => 0
[1,1,1,0,1,0,1,0,1,0,0,0] => 0
[1,1,1,0,1,0,1,1,0,0,0,0] => 0
[1,1,1,0,1,1,0,0,0,0,1,0] => 0
[1,1,1,0,1,1,0,0,0,1,0,0] => 0
[1,1,1,0,1,1,0,0,1,0,0,0] => 0
[1,1,1,0,1,1,0,1,0,0,0,0] => 0
[1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,0,0,1,0,1,0] => 0
[1,1,1,1,0,0,0,0,1,1,0,0] => 0
[1,1,1,1,0,0,0,1,0,0,1,0] => 1
[1,1,1,1,0,0,0,1,0,1,0,0] => 1
[1,1,1,1,0,0,0,1,1,0,0,0] => 1
[1,1,1,1,0,0,1,0,0,0,1,0] => 0
[1,1,1,1,0,0,1,0,0,1,0,0] => 0
[1,1,1,1,0,0,1,0,1,0,0,0] => 0
[1,1,1,1,0,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,1,0,0,0,0,1,0] => 0
[1,1,1,1,0,1,0,0,0,1,0,0] => 0
[1,1,1,1,0,1,0,0,1,0,0,0] => 0
[1,1,1,1,0,1,0,1,0,0,0,0] => 0
[1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,1,0,0,0,0,0,1,0] => 0
[1,1,1,1,1,0,0,0,0,1,0,0] => 1
[1,1,1,1,1,0,0,0,1,0,0,0] => 0
[1,1,1,1,1,0,0,1,0,0,0,0] => 0
[1,1,1,1,1,0,1,0,0,0,0,0] => 0
[1,1,1,1,1,1,0,0,0,0,0,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module.
Code
DeclareOperation("number2dimextn",[IsList]);

InstallMethod(number2dimextn, "for a representation of a quiver", [IsList],0,function(LIST)

local A,n,simA,RegA,U;

A:=LIST[1];
n:=LIST[2];
simA:=SimpleModules(A);
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
U:=Filtered(simA,x->Size(ExtOverAlgebra(NthSyzygy(x,n-1),RegA)[2])=2);
return(Size(U));
end);



Created
Jul 13, 2018 at 11:55 by Rene Marczinzik
Updated
Jul 13, 2018 at 11:55 by Rene Marczinzik