edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>0 [1,0,1,0]=>0 [1,1,0,0]=>0 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>0 [1,1,0,0,1,0]=>0 [1,1,0,1,0,0]=>1 [1,1,1,0,0,0]=>0 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>0 [1,0,1,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,0]=>0 [1,0,1,1,1,0,0,0]=>0 [1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0]=>0 [1,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,0,1,0]=>0 [1,1,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,0,0]=>0 [1,1,1,1,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,1,1,0,0,0]=>0 [1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,0,0]=>0 [1,0,1,1,1,0,0,0,1,0]=>0 [1,0,1,1,1,0,0,1,0,0]=>1 [1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0]=>0 [1,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,1,1,0,0,0]=>0 [1,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,1,0,0]=>1 [1,1,0,1,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0]=>1 [1,1,0,1,1,0,0,1,0,0]=>1 [1,1,0,1,1,0,1,0,0,0]=>1 [1,1,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,1,0,0]=>0 [1,1,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0]=>0 [1,1,1,0,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,1,0,0,0]=>0 [1,1,1,0,1,1,0,0,0,0]=>0 [1,1,1,1,0,0,0,0,1,0]=>0 [1,1,1,1,0,0,0,1,0,0]=>1 [1,1,1,1,0,0,1,0,0,0]=>0 [1,1,1,1,0,1,0,0,0,0]=>0 [1,1,1,1,1,0,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,0,1,1,0,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,0,1,1,1,0,0,0]=>0 [1,0,1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0,1,1,0,0]=>0 [1,0,1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,0,1,1,0,1,1,0,0,0]=>0 [1,0,1,0,1,1,1,0,0,0,1,0]=>0 [1,0,1,0,1,1,1,0,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,0,1,1,1,1,0,0,0,0]=>0 [1,0,1,1,0,0,1,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,0,1,1,0,0]=>0 [1,0,1,1,0,0,1,1,0,0,1,0]=>0 [1,0,1,1,0,0,1,1,0,1,0,0]=>0 [1,0,1,1,0,0,1,1,1,0,0,0]=>0 [1,0,1,1,0,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,0,1,1,0,0,0]=>0 [1,0,1,1,0,1,1,0,0,0,1,0]=>0 [1,0,1,1,0,1,1,0,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,1,0,0,0]=>0 [1,0,1,1,0,1,1,1,0,0,0,0]=>0 [1,0,1,1,1,0,0,0,1,0,1,0]=>0 [1,0,1,1,1,0,0,0,1,1,0,0]=>0 [1,0,1,1,1,0,0,1,0,0,1,0]=>1 [1,0,1,1,1,0,0,1,0,1,0,0]=>1 [1,0,1,1,1,0,0,1,1,0,0,0]=>1 [1,0,1,1,1,0,1,0,0,0,1,0]=>1 [1,0,1,1,1,0,1,0,0,1,0,0]=>1 [1,0,1,1,1,0,1,0,1,0,0,0]=>1 [1,0,1,1,1,0,1,1,0,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0,1,0]=>0 [1,0,1,1,1,1,0,0,0,1,0,0]=>1 [1,0,1,1,1,1,0,0,1,0,0,0]=>0 [1,0,1,1,1,1,0,1,0,0,0,0]=>0 [1,0,1,1,1,1,1,0,0,0,0,0]=>0 [1,1,0,0,1,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,0,1,1,0,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,0,1,1,1,0,0,0]=>0 [1,1,0,0,1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0,1,1,0,0]=>0 [1,1,0,0,1,1,0,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,1,0,0]=>0 [1,1,0,0,1,1,0,1,1,0,0,0]=>0 [1,1,0,0,1,1,1,0,0,0,1,0]=>0 [1,1,0,0,1,1,1,0,0,1,0,0]=>1 [1,1,0,0,1,1,1,0,1,0,0,0]=>1 [1,1,0,0,1,1,1,1,0,0,0,0]=>0 [1,1,0,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,1,0,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,1,0,0]=>1 [1,1,0,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,1,0,1,0,0]=>1 [1,1,0,1,0,1,0,1,1,0,0,0]=>1 [1,1,0,1,0,1,1,0,0,0,1,0]=>1 [1,1,0,1,0,1,1,0,0,1,0,0]=>1 [1,1,0,1,0,1,1,0,1,0,0,0]=>1 [1,1,0,1,0,1,1,1,0,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0,1,0]=>1 [1,1,0,1,1,0,0,0,1,1,0,0]=>1 [1,1,0,1,1,0,0,1,0,0,1,0]=>1 [1,1,0,1,1,0,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,1,0,0,0,1,0]=>1 [1,1,0,1,1,0,1,0,0,1,0,0]=>1 [1,1,0,1,1,0,1,0,1,0,0,0]=>1 [1,1,0,1,1,0,1,1,0,0,0,0]=>1 [1,1,0,1,1,1,0,0,0,0,1,0]=>1 [1,1,0,1,1,1,0,0,0,1,0,0]=>2 [1,1,0,1,1,1,0,0,1,0,0,0]=>2 [1,1,0,1,1,1,0,1,0,0,0,0]=>2 [1,1,0,1,1,1,1,0,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,0,1,1,0,0]=>0 [1,1,1,0,0,0,1,1,0,0,1,0]=>0 [1,1,1,0,0,0,1,1,0,1,0,0]=>0 [1,1,1,0,0,0,1,1,1,0,0,0]=>0 [1,1,1,0,0,1,0,0,1,0,1,0]=>1 [1,1,1,0,0,1,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,1,0,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,1,0,0,0]=>1 [1,1,1,0,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,1,0,0,0,1,1,0,0]=>0 [1,1,1,0,1,0,0,1,0,0,1,0]=>0 [1,1,1,0,1,0,0,1,0,1,0,0]=>0 [1,1,1,0,1,0,0,1,1,0,0,0]=>0 [1,1,1,0,1,0,1,0,0,0,1,0]=>0 [1,1,1,0,1,0,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,1,0,1,0,0,0]=>0 [1,1,1,0,1,0,1,1,0,0,0,0]=>0 [1,1,1,0,1,1,0,0,0,0,1,0]=>0 [1,1,1,0,1,1,0,0,0,1,0,0]=>0 [1,1,1,0,1,1,0,0,1,0,0,0]=>0 [1,1,1,0,1,1,0,1,0,0,0,0]=>0 [1,1,1,0,1,1,1,0,0,0,0,0]=>0 [1,1,1,1,0,0,0,0,1,0,1,0]=>0 [1,1,1,1,0,0,0,0,1,1,0,0]=>0 [1,1,1,1,0,0,0,1,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,1,0,0]=>1 [1,1,1,1,0,0,0,1,1,0,0,0]=>1 [1,1,1,1,0,0,1,0,0,0,1,0]=>0 [1,1,1,1,0,0,1,0,0,1,0,0]=>0 [1,1,1,1,0,0,1,0,1,0,0,0]=>0 [1,1,1,1,0,0,1,1,0,0,0,0]=>0 [1,1,1,1,0,1,0,0,0,0,1,0]=>0 [1,1,1,1,0,1,0,0,0,1,0,0]=>0 [1,1,1,1,0,1,0,0,1,0,0,0]=>0 [1,1,1,1,0,1,0,1,0,0,0,0]=>0 [1,1,1,1,0,1,1,0,0,0,0,0]=>0 [1,1,1,1,1,0,0,0,0,0,1,0]=>0 [1,1,1,1,1,0,0,0,0,1,0,0]=>1 [1,1,1,1,1,0,0,0,1,0,0,0]=>0 [1,1,1,1,1,0,0,1,0,0,0,0]=>0 [1,1,1,1,1,0,1,0,0,0,0,0]=>0 [1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module.
Code

DeclareOperation("number2dimextn",[IsList]);

InstallMethod(number2dimextn, "for a representation of a quiver", [IsList],0,function(LIST)

local A,n,simA,RegA,U;

A:=LIST[1];
n:=LIST[2];
simA:=SimpleModules(A);
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
U:=Filtered(simA,x->Size(ExtOverAlgebra(NthSyzygy(x,n-1),RegA)[2])=2);
return(Size(U));
end);



Created
Jul 13, 2018 at 11:55 by Rene Marczinzik
Updated
Jul 13, 2018 at 11:55 by Rene Marczinzik