Identifier
-
Mp00251:
Graphs
—clique sizes⟶
Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001221: Dyck paths ⟶ ℤ
Values
([],1) => [1] => [1,0] => [1,0] => 0
([],2) => [1,1] => [1,1,0,0] => [1,0,1,0] => 0
([(0,1)],2) => [2] => [1,0,1,0] => [1,1,0,0] => 0
([],3) => [1,1,1] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 0
([(1,2)],3) => [2,1] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => 0
([(0,2),(1,2)],3) => [2,2] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
([(0,1),(0,2),(1,2)],3) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([],4) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 0
([(2,3)],4) => [2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => 0
([(1,3),(2,3)],4) => [2,2,1] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => 1
([(0,3),(1,3),(2,3)],4) => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
([(0,3),(1,2)],4) => [2,2] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
([(0,3),(1,2),(2,3)],4) => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
([(1,2),(1,3),(2,3)],4) => [3,1] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,2] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => 0
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([],5) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 0
([(3,4)],5) => [2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => 0
([(2,4),(3,4)],5) => [2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 0
([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(1,4),(2,3)],5) => [2,2,1] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => 1
([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 1
([(0,1),(2,4),(3,4)],5) => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 0
([(1,3),(1,4),(2,3),(2,4)],5) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([],6) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 0
([(4,5)],6) => [2,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 0
([(3,5),(4,5)],6) => [2,2,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => 0
([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => 0
([(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(2,5),(3,4)],6) => [2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 0
([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => 0
([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 1
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1,1] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 0
>>> Load all 252 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!